How to use t6-Iot image preprocessor to trigger action based on image facial expression recognition

In this recipe, the goal is to trigger an Email action after t6-IoT detect a human facial expression from a provided image.

Check prerequisites

In this recipe, we’ll use the following concepts:

an aidc Preprocessor to identify the facial …


This content originally appeared on DEV Community and was authored by Mathieu Lory

In this recipe, the goal is to trigger an Email action after t6-IoT detect a human facial expression from a provided image.

Check prerequisites

In this recipe, we’ll use the following concepts:

  • an aidc Preprocessor to identify the facial expression (Automatic identification and data capture)
  • a Flow to store specific measurements
  • a Rule to trigger an email after the facial expression is identified on the image
  • We’ll also set datatype as a String so that the Flow will contains the facial expression

Setup the Flow container

This step is straight forward and does not require anything special. We’ll customize this Flow with a String datatype.

So, the first step is to create this Flow using the following payload. To have more details on Flows, read the technical documentation.

{
"name": "My AIDC Flow to identify facial expression from images",
"data_type": "a394e18f-12bd-4c22-b9c3-74c387d1a8db",
"preprocessor": [
{
"name": "aidc",
"mode": "faceExpressionRecognition"
}
]
}

Once your Flow is created, take note of the flow.data.id on the Api results. This value will be used on datapoints creation as the referring variable {{$flow_id}}.

Create the Rule that will trigger the Email
{
"name": "Trigger an email when aidc identify a sad facial expression",
"rule": {
"conditions": {
"all": [
{
"fact": "flow",
"operator": "equal",
"value": "65e2ca88-adf1-431b-a2f4-82497f54f32f"
},
{
"fact": "value",
"operator": "equal",
"value": "sad"
}
]
},
"event": {
"type": "email",
"params": {
"to": "{{$your_own_email@domain.invalid}}",
"subject": "Facial recognition on t6 Flow {flow}",
"text": "Facial recognition on t6 Flow {value}",
"html": "<h1>Hello</h1>Facial recognition on t6 Flow<br />Value: {value}"
}
},
"priority": 1
},
"active": true
}

Need more details on Rules? read the technical documentation.

Let’s put it all together, post image datapoint

Before posting the datapoint, you’ll need to make sure the payload contains a valid base64 image encoded string. You can use an online service to do that.

{
"save": false,
"publish": true,
"flow_id": "{{$flow_id}}",
"mqtt_topic": "image-test-processing",
"preprocessor": [
{
"name": "aidc",
"mode": "faceExpressionRecognition"
}
],
"value": "/9j/4AAQSkZJRgABAQEASABIAAD/4QCwRXhpZgAASUkqAAgAAAAFABoBBQABAAAASgAAABsBBQABAAAAUgAAACgBAwABAAAAAgAAADEBAgAMAAAAWgAAAGmHBAABAAAAZgAAAAAAAABIAAAAAQAAAEgAAAABAAAAR0lNUCAyLjguMjAABQAAkAcABAAAADAyMjAAoAcABAAAADAxMDABoAMAAQAAAP//AAACoAQAAQAAAJABAAADoAQAAQAAACwBAAAAAAAA/+EC/mh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC8APD94cGFja2V0IGJlZ2luPSfvu78nIGlkPSdXNU0wTXBDZWhpSHpyZVN6TlRjemtjOWQnPz4KPHg6eG1wbWV0YSB4bWxuczp4PSdhZG9iZTpuczptZXRhLyc+CjxyZGY6UkRGIHhtbG5zOnJkZj0naHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyc+CgogPHJkZjpEZXNjcmlwdGlvbiB4bWxuczpleGlmPSdodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyc+CiAgPGV4aWY6WFJlc29sdXRpb24+NzI8L2V4aWY6WFJlc29sdXRpb24+CiAgPGV4aWY6WVJlc29sdXRpb24+NzI8L2V4aWY6WVJlc29sdXRpb24+CiAgPGV4aWY6UmVzb2x1dGlvblVuaXQ+SW5jaDwvZXhpZjpSZXNvbHV0aW9uVW5pdD4KICA8ZXhpZjpTb2Z0d2FyZT5Hb29nbGU8L2V4aWY6U29mdHdhcmU+CiAgPGV4aWY6RXhpZlZlcnNpb24+RXhpZiBWZXJzaW9uIDIuMjwvZXhpZjpFeGlmVmVyc2lvbj4KICA8ZXhpZjpGbGFzaFBpeFZlcnNpb24+Rmxhc2hQaXggVmVyc2lvbiAxLjA8L2V4aWY6Rmxhc2hQaXhWZXJzaW9uPgogIDxleGlmOkNvbG9yU3BhY2U+VW5jYWxpYnJhdGVkPC9leGlmOkNvbG9yU3BhY2U+CiAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjk2MDwvZXhpZjpQaXhlbFhEaW1lbnNpb24+CiAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjcyMDwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiA8L3JkZjpEZXNjcmlwdGlvbj4KCjwvcmRmOlJERj4KPC94OnhtcG1ldGE+Cjw/eHBhY2tldCBlbmQ9J3InPz4K/9sAQwADAgIDAgIDAwMDBAMDBAUIBQUEBAUKBwcGCAwKDAwLCgsLDQ4SEA0OEQ4LCxAWEBETFBUVFQwPFxgWFBgSFBUU/9sAQwEDBAQFBAUJBQUJFA0LDRQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQU/8IAEQgBLAGQAwERAAIRAQMRAf/EAB0AAAEEAwEBAAAAAAAAAAAAAAABAgQGAwUHCAn/xAAZAQEBAQEBAQAAAAAAAAAAAAAAAQIDBAX/2gAMAwEAAhADEAAAAfVIAAAcx5bxSuHKooCgOHIrKoCdNgsLDR4goggCorLQFFDQAAAvdkmgAAAAAADl3LeKaeAooDxRwDmVZBLtiQa54tJNgdwknDaFQVBkEAUKKAAC/WSaAAAAAAAOX8umKVwoooo8UcKKhYiV2bp2s86KussiS3OahG4ubnqdJjOioCIAOopAAC+2SaAAAAAAAOYcumHNdWQUBRw8UUQWzmS8vnSqXOxk12oJjS8TegZrWma57ll2JpBorCCi0UAAF8sk0AAAAAAAcy5dMGatZRQHDhwooFazeVTppdTVGNKX0xqbz6tnpQ9TMkC5wJv19I53f4aDKIoUUAAF8sk0AAAAAAAcz4dMKup4oo8cKKFYpeVcu2i1iNJKddNVQsr++OyudfWJIms7VJGrvsX1JnU8aIBkuSxBAEL3ZJoAAAAAAA5pw6YVeKKOH04BQqlculQ59cNlvxvf56aBdXnpqenOu75Y1x6y/pnWXnUOnOLefYc3v01gAQyXJYg0AL3ZJoAAAAAAA5tw6YFcOFHD6cA8K5Dw66qb6By6dX1xLYGO9f5dq7q6yXa1pOvOF15Srnnm+XFu3msx7IxcyoIPZLASkAvVkmgAAAAAADm/DphVRwo4cKLYq4F87c97nG+2ce9u3yxZ1AnXUOlNt2uU81fXlqN826zUrjhvfy7Sz1rne6gAVkQDQAvFkmgAAAAAADnHDpiUFFHDhRbFlqFvGuPbrfD09Lmdh15YM7gzegu6ppsc2UzoOuI9j2ddqcg68NLvh6azq8SoArIgGgBeLJNAAAAAAAHOOHTGoA4cOHC2LLR7eRce/pXzd9905anfPjGtVbeIze9x2mY7Vjr5af189hOiY6WHPTne+fNOnm9EW9BzUGjmRANAC8WSaAAAAAAAOc8OmJQcKKOHi0stEs43y7+sPL6dZvlyHtKVtQNNjy3anS/XFR1w0e5IuN2XzHZI87dfL6uLEIIKytiiUgF4sk0AAAAAAAc54dMSuFFFHjhbC3Wp5n4+j1p5fXoLeR9FN9Hh5ZuWbn37/wAe2z3nh/XzUHpzy3HoXHe543rk4T083rsxCALcrYDQAvFkmgAAAAAADnPDpiVwooo8cCLqrnXDOHp7pw71RdD05b/rw4ZeiZ6eieUrPTXA+/lbc7/WekZ6Ys62ctV6+buKYRRBbksAEAvFkmgAAAAAADnPDpiVw4BR44BQOf8An9l+49th05xM3lm91A6jOfR5zo70cw9Pm51ZapbqYzbGffC/654lAFuSwAQC8WSaAAAAAAAOd8OmJQUUcKOFFFXU+b3TuO9huYkri6VbbG+vKpa6Uj0cahZIzuwM7K5lQ+y+9fMxEUFuSwAQC8WSaAAAAAAAOd8OmFXAKOFHCgKY/N7V49sEsLbQrrJqUvV+njoV60LvyqtlgksupLTDmxE6d18zEFB1ylgAgF4sk0AAAAAAAc74dMSqAo4UcKAGfl3xeX1wLrWJSnSh710nOLHvjQtdGduPL9ToGc2veJEQMdJ2sdF6eRqgC3JYAIBeLJNAAAAAAAHO+HTEqgA8UcKAA1H83rb5++t1OSXrm646mxyrSs9cP3zzwLe7zmRt7ztbEi4S1AC5WwAQC8WSaAAAAAAAOd8OmJVABwootOAXRuNR/n/QgavM7ek9Oc5OXulV6Zd1882q9laos2s3rXDYXKKAAXK2AgAXiyTQAAAAAABzvh0xKCiDxwC04AFIXi92uz10N5b/AKbyXfKXqo+uc3pxtm/PBc8OLedc+la4spQABbksBAAvFkmgAAAAAADnfDphVB40eKOFpRRBUieb16vh6eX7W7euZ66873xi9MWuW7XjWrztOL0fXG475sAUQB1yWAgAXiyTQAAAAAABzvh0wKDwAB4U4cNp8Jz7U3yezBdEui3NR0zR+vLPrM+TZRvy764WfpzbCAAo+5LAQALxZJoAAAAAAA53w6YVUUAAUBwo7UzS5+eqp5Pdqqqdkm3U9JRO3LcXDizGyzq265WnryZkAIPHXKWAABeLJNAAAAAAAHOuHTEqigAAA4UfWdJfHpE8/s5nZHsoXbNf6c0uNstlNkT89N8zdenDFYkLSCjrksAEAvNkmgAAAAAADnPDpiUHCgAAKONJVdxrpvn65ceitHNNZ5H25xOvKzZby7sOdbInQRpOnPX9ON1su8giCU+gBoperJNAAAAAAAHOOHTEoKOADEVOqHZUEmzXqLx9tnncJ20M1W4qnTHKu3GRpd13pPNiR8NHVI3nlffz49c+pS9dLxDQAAL3ZJoAAAAAAA5xw6YVcQNSrmjK3VPpsYa2USc69XeLvPXXTtp87q0tZ6c6L25v3m4k42hLSPGmaotnJu/k128YhSzHUo6VLeBBpfLJNAAAAAAAHNuPTVLzaykVFItR6eQSTEwkx1Lz9e2+f0Q29HLWpqodOdD7c97rNgWYb8ykNK4cT68Kl14sGChT4zG/O5S9ii92SaAAAAAAAPO3LpzeopriDqR0UwGZcq5DLDI6Py6di83pZnpX5qkbld7c52sbJNmbdmDZzvfPluuWs65SMAwWgWHGUkHVI9o1MAAAAAAADxdjpCjXkPUgmFMaPM5mamKyMNmMM6t/PVhzvW53rdZ1+ph1I9xqdc6zuYkUQwjAAQbWSH1lJUfQYswAAAAAAAeL8arCxjV3MamjoyEkmLmWKYUajLSSOMrHZjMENsxiKgg0QxjQFGDqyGQyR9DCzgAAAAAAB4SzdQapIFZKiRKllE0kDVwpjVUFxossezFWGzFBaGNEGDRowaAgAPp5lj6GFnAAAAAAADwLFaMZEUsSNhLLJBkGDRgwYMptPhEx1jMAxcQiMGjRogDRQH0GWPoYWgAAAAAAAPnqaABkaytzEyWWOFGjBgwZWKsYqMAYYhqtTGINEAQQAEMtRyRH0PLQAAAAAAAHzuNGMIpKNtEqXIYhAMQymRh0VMYDRsY6QarJCmjRIWkEAAG1HiSfRMtAAAAAAAAfPErA415Y420rDGPMBHplBiMSAkNGmOUpUFSAaINCxKB1IOiKYzIfRctIAAAAAAAfOwq40eWzNQeZyKRKx0wwiDEaY4JcYg4BQEEAYN1HAFKEYyHUuPomWkAAAP/EADMQAAAFAgUCBQQBBAMBAAAAAAABAgMEBREGEhMhMDM0EBQgIjEHIzI2FRYkJUE1QEJD/9oACAEBAAEFAvU+4vX1FgnFjUWNRY1FjUWNRY1FjUWNRY1FjOsZ1jUUNRQzrGdQNxRDMshqKGooaixnWM6xnUM6hnWM6xqKGooZ1DOoZ1DOoaihqKEbt+R/rlxF6DMyEiotRSquMbNJxdL06XjxTT8aYxNZyH/0I3bcj/X5Z1ej08pH1FjMIXiafVlGtw5eRyOinvQkvR2cgkTJmWDjiXTiiY/ivqaeQ+3yRu25H+vyYixGpgPtmStNb0s0Fd51RhpLkpasPzUyTeagRZbjakOu2NiSTSsI4hbSDLkjdtyP9fjrctcWGiJmfmHu228glQtOM+64SlLMgzW0eRkyVKdaluWkJ3QvKsvexgutHVqaZW443bcj/X4nHEst1md5lxEbOnI9dS47Dc9edL9JNZyac4iQTbKmfJZA+2t4MR3EuvJbStlR5oLyor9MmlU6d67i/hG7bkf6/FXJX3EuXUhS5T8SgOygnDaGClYYzvqoyWFSKVs7QzueHrD+LIj/AItFpNFzCXEXAc864sYIrPlpaisfpP0Ru35Hy+9wkJz6nJpDDlPQQQlKCUYc94fIjN6xBtg1rS22SZMUsyYybnHK2Ko6VRi2XAW7GfjSfORfXbwjdvyP9bhkr0ozszO5TkHejMaSLgwoLQgkLLKcFg5LRsJZRIMjWeUjUu4rsY32X4ykuMGbKaArVoh8Mbt+R7rcOLXFN0GmpM49BpKQwnKWW4c9qUnnW6s8kx3I9TpGixPlmStRZpSZ30jEpnURPYNp1J2GBcx4fPhjdvyPdbhxq5p4epd5UynMk2wREKjWmKamfi+TUZNQxmppteLXXkfyxTZCppsVOViRVpVdeN1vE8smaRXUVELZIYhgkhtwh9PrnhzhjdvyPdb1l4Y2YN7D+F3iVUG/amrSno8aThmZITMpzVPSmPGadKOlIpUNf8nMhJlxamzFad0IriKfRIhqlYZkoKnzjnsVJlL0PNpJwxF8ph8+GN2/I91vSXoqkfzlMpbRx6glXsqFS0SmViTUplTorz8ZhjzQpprQvDEbUYSaUOYkmLjPeRdUijyXm5kKou08JfQ6Jm0SmQ/5CrGlLaeGN2/I91vSXoIV+OiJX216jNTp65KY+FY8RzFkNquUim0cqaKRTfMVCiwdFiotGh/FLDmrFWh6BhRiJS6riB5eInKfZgnPuNYCputOM78Ubt+R7rekvTjGMg4EVWaJYiD/AL26lSZyl/05JkOUOjMRiasgVFBk7WIWqXkNByns5F+5QaR7v/ngVvJST4o3b8j3W4quyiTT47RxWdQgpaECbMTa63CYyw0RzFeVldfLWaeb1BGRvHYuG28oL8cNSmzmGfFG7fke63E80mW0HF5TW8JTuU1VDTXCn6r8VuzeInkkb7/l47EsnhGLMG/xvtmJsYbpSGKwfFG7fke6xcTVgtsmzeK4X8TZG65n9zh+BpPNYriyJEqqeemSjjTmUuqjOQ3DytmRFm2lKs1hwzVUL78Mbt+R7rFxGRGSEOIVa6p1yRVD01YXpGu/Iga8d7CcGhqKpxvMx4LcES4ZvwIDuyHcxEYg01uoMx47UVHFG7fke6xcavxSKh+CoaprsJko7TiFGMQU2ZPcPD62GmGlJTmyEr+2FPd1iUdk05rRg8cbt+R7rC/qL0l7RUVXjwMjbaKkyiRPbNQqqG0qXBdEaU7FNh9mYJERPlaBc2yb1XDK3JG7fke63I97Vy3v7fTlVJTioOHIlVrzr5PSpF0SnFHEPy7hmxUQ9MfhroTWnDozOpJ5I3b8j3W5HWjdblLJxNL0YZTpyHTdgR4KSpxSESKe2h3QvBpxqcTJjofEVGm3QuWN2/I91uIgQT81djQX7Vh+my6xOmwGCmVOutsBqWvMt1TSYivNNtN5VIK4oX5ckbt+R7rC/CRggkvdKQTiZTa6Y4VWJpmXWkIBylSjYTplCM9NlgmkpSCLamuEzKNJlxX8I3b8j3W4T+2JdehQyg4gqmIZMOIcNpwS2ydKp0ZKxUac5GXFWRBlvOI0fSDZbpSG2/cohJk1COafqNJgKp2NaLVA3Z0uCN2/I91vSSTUHnW46ZeLabFE7Hct0Z5E555WVulQkU6mKDgfKwe3E2Ih5M2mGwuK4tAhM5ybQSQ0VzsF/D5XFSQWWow0NLYlvsCmfU+fGKk4zpFYGQxf0xu35HusC3EqoRYQfxjCbN3GzxiTiSoSCdeW+om7jVyiInKJPxTnyk09YcD/AMP/ADJc2nSLCnMawb2CflovBfw+mwq6iQ3UXtR3MLi5GKfiOpUs4H1SeSKfjWjVIJLOjwjdtyPn9+fUGaY3OxHKlpW57lOWDkgfkDXlJbxuBBEyTKjQu6SGCMTNx0mYcMPmJKhLUVn0ZlxCJsm1BB3Nv8TPZZiozW4rdWrBynE3IH4/ASYz3FNrMylOUL6ityV/6jdtyYnxOdOlmbj6nXAtYW5cXueawWu4R7EkRJJPzfY1b0DGr9NTFqkSqJeIw+zmKa2ojNsw2VgkwwVzI8ok1OPFTUcaNpEuovzVEkGr0kC8ELGEsXOURcNaHYnJIj/5N2RnNagtZGFquDc3U4CXlGYF7TRsFGQzWBr2Q4bZwcUVJgf1utKXcYxFheKIZg8UMpM8W2B4zlEJOJqhJJxa3DsPgGoz8D9JeLarDDH61yVp/wDyOaxLdsFug3djWEK9yVBPuBbGajBmCMK95fcSM41WyBqsLnY9hcGZC6fDcWtwF4ECGFv1nkqrh/yi3Aa7kbmxfiheYG5kCEGYSkyFzIzUdzVcX3LwzA0pcM4bah5NJA4qRojIQtsYtxkCGFv1nkrLmWsrcPKe0ZhOu9Oeutv7ZMNEC3HwCClC9ge4Mi8MwuCMZwZjNsZ+J/PDYJ/I9jwt+s8lfX/mVq2lqyx4ytCMyRrWlJEE3cCU5QWwMwZi52M7Axc7HcZrC4IxfYwfgfEYT8Efvc/PC36xyVf3V0zu7UfaqUrKhlGRDbdi2H4i4K4VYhnsWYKO43Mbg1DMDO4MhYx/rjMtmzsava68fvwr+sclU2rcU80mSerN6r7LO+UGoki5mNyJQWrbMfgblxmFwZkMwM7g/AzO3Iv2m78r+cK/q/JWf+Vj7Kv7oCbrbLZRhlBLUrYKPY/jKFe0HuP/AEewuPnwvvf0WuLW8DLgc/BXSGFf1f1f/8QAJhEAAgIBAwUBAAIDAAAAAAAAAAECERAgMEADEhMhMUEiQjJQgP/aAAgBAwEBPwHUtt7NFaHyVtvefJW2yssWVl6KK463GJakXzluVeih6HzVuJUP3hLDgdmKKK2Xw1txWFESSFJCVjQ4nYeM7BwO0awtL4a244Q/YkR9YorDzIep8NbSxFFUsLKZZY3mQ9T4a20JEiyLtj9H4LD0MlqfDW3E+FlCdDmdxBkpEpHceQUz6SWp8NfNlFkBlHjH06O0UURVDY/ZR2WdtESWp8NfNqrZD1LFDJdRik2RsTJDGxSE8PU+Gvm1H0yv7CLGeMjCsfBq0SKscBLH4PS+GttO44eLLxI/qMSxWZLS+GtvoK1hoooookR/xHhaJ/D80Phrb6E+3VRN/wAiPwa9laZ/NL4a2+m/ehY+jXseayjqaXw1txl2kZ3lDYmP7Y3i9DlQ53pfDW5H6fmLLx2naP7oY9T4a3E/ZB4aK9EIsool06HHL1vhrd6QhidHkJdZnlY5jeZ63w1u9PSx+i9E9b4a3YfSy8tjZZeZ63w1uwWbGxy0ol7GtT4a+bsVoea0tFVyFtoQs0SiUVraGsXxVtx+4WhvZZJ8dbkWLcbJS/0l0KQmLWyxs7uSt6xdShdY8p5TynkH1Byvm2Xs3/yb/8QAJREAAgEDBAICAwEAAAAAAAAAAAERAhAgEjFAUAMwIUETMnBR/9oACAECAQE/Acn2T564b564b564b9jJ9jyXOZqki0kms1ZvJc6p2bJJJFUKo1msVRqJJs8VzqrO7xpuhZyTzamb2myRBFlgrPoqiRWgi9QsVZ9FVaCDSaTSVUmkVBpNA6bIXRQV2QvIapJJ+Spi2EySbNCF0T+CqyEilGw19lQhWgZOa5r+R/5dMVRqJNxMRJqH6Fzn+w98JGUi3EP1LneRwyZeE2QtxDxWK53lptOKQtxXizKcVzvJtjFocSUoVngsVzmpRVRF1dN7CWUEYrnvY+7U2kTNQsVkue9iqyvBAvWug8isibJELFZroPJtgiRWd1mugr2wpIypHkug8jsiClEZJkzkue3A6pumJ5yJi6GLVDqnFMTzRInaOgq2GoN8EJelLmQRlXQbYIWcCpI6LY3KvGNXQsYII5L90D8cn4TQaDQzQaBUx/b4tH8D/8QAPxAAAQICBQoEAwcDBAMAAAAAAQACAxEEEiEwMRATIjJBUWFxcpEFIEJSIzNiFEB0gaGxskNjwSRTc5IVgqL/2gAIAQEABj8C80TSdrHatd3da7u613d1ru7rXd3Ws7utZ3da7u613d1rO7rWPdazu61j3Wse61j3Wse61j3Wue61j3Wse61j3Wse61nd1rO7rWPdax7rWd3Ws7utY91rHutY91rHutY91rHutY91rHuoXSL2J1G/1Zr4mhzTm0VpaRjOxBwrxGbTJE0ouiQzZyTIsCMx7Hbjgt4+4QukXsTqN9NwznIoyoMQv9MyookKOw7QJpjH6W9x2qkAxa8NhsYPUFWdZP3IvhRAGnDNlfDp7222hZuOxlIh+6dqlFoz4f1bEHMNZhvYXSL2J1G9+z0RucebC5Vqa8OdjVCrNZZ6GjYorc5VEv1TW4SQZR7aRhMmQQzlHkz1FuCa0A7uK1HjjNS2KbSUaLSYoYXHQnhewukXsTqN5JpqueZTWeiPFmABU4cFzvq2ovsbE4IvdoztVWeGHBA1pmc5b0xtIpIY+Xymf5KJY6zgUGv0mnYVMOmFI2KQ5oQY7waZB0TxF5C6RexOo3Ze4yCAJH0DcrdHhtKLGf8A1sUpOjRtnFQxVlGOAPp4qZMxO0ouqmrskmiHAFYaxiYr3W7FhIoVbDxTXa7vUFMSqe1MpEGcKK39VCpOBdiON3C6RexOo3Yg7sV8preGK0XZzcZWBOm6U9oQkybhtRiONqtZWHFYTCws3oOE1gqslY1CbfzRq6UthQo8SeapGAOx13C6RexOq7iPb8ycpnYjDr2ep+9aQUmiWUgEI6bSjNwkjDFqsCFqwUtqkTJQIw9DpqFHlIvFt1C6Rev5m6iP3BOlXxwam1/+qmduUhu1GeO1FrhpTs4ol0pINDZE7VVbgMfJat4KorsdG6hdIvX8zdR6mJkJpxwM5BCI7Sl5AcGgTJVJimVX0rw87XvtVNZO1kVQ+SMuytxU0Zp42IztQm6ba5q3ULpF6/mbp9k3OeAEIQGgE1oEhk+I8T9u1fZ6O/N7XcAm0ODFzwJ+I9ZpuhB3Lw2X+4qbDdY2O2s3mEGA2hA51zJ+oINYGviD1prIjc1G/dWrOtHNaA0JK3DOGV1C6Rev5m6iFp+W6sU2XqQkpUWEYsd9nJZ+k0kNe7ZOck/40p4naVOtOe9AhUd3pYJhNslFa+YKEJsLT9RTocSrIqbI3/UpsegxM4GWhu0FNrsMKktEojCotbCqrbQFRGmwuFa6hdIvX8zdUuDtexQHN0XTlVKae6swX2SjOaHYviO1WDeVEj0eBFpcFmtS4xqh3SEQ0aQWZiWg4IkjBOY7es035z7SeCzutxJTWwrS4yki2kNfBeBpwX4gbxvCrCRJtrBR5+1UWjVS9r3actybDZqMFUXULpF6/mbr/Chva3NsdpSO9QzvahKwkqvSAYjSZuAwQhUaJVfDwYwyBG5OzkLTG9OeQHNBnYjJsppxGCrS26yMF8pbCEymRXGtDtZDY2c1BimE2BCbqOOujDJnVwUQYzaVSaROQg2Tu4XSL1/M3bqW4WwyLVAP0BTImrJckTCa0N6lKPHs9rFVhiQG1VU5ETXtP6JrrJhaRUwnn6SoxlVc+JO7hdIvX87swIvy4pqk7lCgznUFWatVuKIkUGQm2nFyZCbadpU0BsQ4LiuKKO9SVKorXWsGF3C6Rev53eacZStQkZ8chQmqs6vJYoTUsU+arFAhSGQOOCjUpr9N0zK7hdIvX87szWEsh2Jxngpz0jZJZ+PZVE5FRqLCpAMdonUTR6Rio8KC8GQ34KoQmz3IHA5CJVkR7W6V3C6Rev53dqdXiZxmwZKssUQPzRpUVuGoCojK1SuMUKU6M+JFaZzUQtY6cQ9k80UlpjC2abIfEhprSbU0ZHui1gAbKqqwmVd/G7hdIvX872anJSbhO1BoWCDWRGVBsmntdEhk44qqdiwRf6SUFNQhtNt5C6Rev53pR3b1jaU2iwS2LSza7cwcVN9Pw9LbAjmqdbyRLqWLUBnGvZuKqjRfuO1R27gmlyhw/c5SGyy8hdIvX873qCc0owqM/NTdIxPaEIUOA+I44uAm554oiHRY0Oe9acNwWkmlzZnWE1XLjDP0i0KkQKSa5loPHqChe7EoxT/TF7C6Rev53shjiiMTgUQdFyqQ3jOLO0iPnoz8NwT3SZIqoBpJxtrw8FNwqlb3INUe9hdIvX870IRGiTDiq1VruKzMBgo1G/qxzjyCggivDhWNbP8AUrNwWNh2WvQL9JxOiVFlqgTcN6gRodjcHDdkLlGG8XsLpF6/nehOa4aJR9cHZLYrHqKJzc/EotqMzf6p2AmquIUmCqCsUAEJ2AiS4b7yF0i9fzN1NzmsH1GSti51/tYokLwujMo9HZY+lxf8KT4zqRF9URympIlmi5GsJ8Vit61rfJwVeh00wXj0RBNjlU8U8NB/uQEAylfZ4h9EYKcNzYg+h07mF0i9fzPnrRYzIQ+oohr3Uh+5iq0eE2jjuUH0uO9+2pNSAlOwKjUeGKoa3ZtPlM7EXMyVit/Hy7xuWchyq7QpwqRFgkYVXJrKbBZTWe/ByDWR/s0Y/wBKPYpym3eLR5oXSL1/M5fjR2tO7apQ4USKvg0Rreoo16Tmx7YdiJcS873LS0QpQhpe5Y1nEbU048VRooM6zB5cVIKblIebiVUBmG5bbV/pqbEa0YMcZhAU6hMij3wrCgG0n7O/2x7FXY4RG72GeWF0i9f1KtHdbsYMSi2H/p4W5uKJIrO3nLbguCltW9yFZObvwX/jqU6oJ/Cef28pyWZRlrRD+S0cVvJ81omg6h0l8H6Z6PZNgeKsECIcKSzV/NBwIcx1oc3AqF0i9i0ajSzs7YhWcjPL373LguGXFcV9atNu5b1p2cUf0KbApgNJgDB3qaq1FjtifRtVuQq0LBW5ZxIzW8E4UYT4olzp81ZbxVne4kbRtBQo9IJj+HPOG2FxCgPhurscwFrhtEr2mxouk7PPqz2Wrh5bVxP6LBccu/ghVP8A6lVwXQj7mlD44jtHutUotEB6VpUd7eSshv8AzXyjJaEDuvhwWMUjFqD6VN7i48SsFbbwW4XXBeE/hIX8Be0pmPxHYc1PzEq3JNHJarDW5rTh9lZEew8V85pWuD+S1gtYLXWJKsasZXvhH4SF/AXtNH99/wC+Q5K5XNVRat3k3eSxaTZ81YFbaFYFh9x8I/CQv4C9pu7PP/dFVt6aFm24CxWYqZxyY2qfkG9b/u/hH4SF/AXtMaP95/75ITVEjbTotU1MrcFYjZ98C8I/Bwf4C9p3/O/90WpreChQRstKG8rSNqwNzjltP3Jq8I/Bwf4C98QP95/7qsUNwU0CcVyVlqnhkxyzyY5bPuTSmLwf8HB/gL3xL/mf++R54eS3IfLLZ92CC8H/AAcH+A8//8QAKBABAAIBAwMDBQEBAQAAAAAAAQARITFBURBhcSAw8IGRobHx4cHR/9oACAEBAAE/IfUAKjkcz+5n+sT+4h/uJ/cT+kn95P6Cf0EP9JD/AE0/tJ/bdHf10/toOmXnKf8Au6Od+V1c5/00/tJ/aQr/AO6f30/tJ/aQ/wBdP66f30/vp/fT++n9dP66O2cv/L3fnOeg6HS+lSvSTEQwpAWb7G18EvXJuLPi5boGpkRqj0CA6be75QTIdwiU5KgNxx1rqev5fj3fmOYQ6kqEqVKgdFqN3V2Aipp6hVy4Ad0+i6R9Ebm6zXDrQwUGJaZB5lHLfcgtJ6hhTYJQMXNquRKjhshpDpXXHWpXT5fj3T8jfoSoEqBAgSpXQlqxdBxKTmZlxuiJvbO8F39k41oQvh7SiK7YjvA9Hcqx3ihDWAFpoDsCSp3O0E/8aVietrsUc6ysemvV8lx7vwHPQhKlQgQ63R+JWVmDWu0wY12A+nM0y83S4Blc+zvLuZWnLvLgRuOyI3hgWoKpkshUW2shgfWb3i2yrQYXBoUrzNLcjFgrkc7T3i6mV6qlSunyXHu/Ac9AhL6BKh0qFCL7soTVjU/qXzVmYAuRwjHdFfgTC3lU+IA5QLb/AC5kQMblRizGuGzNLKhpL7x5rAddsx8PUwMSxC5R7uLa8II6BXaRFldDqteg+S490fA3gQIdCB6cEQBfLxGe0mWlvLxKpQHBT/aUpGs4iBd0xSapratuI7R2TZLyOZhrJGrG+wiHAGqSsctoZTO8PMRVfAJBNNBBRvqbn0g5Y6TK6HUx1NfW+a4937k/cCuh0NIej9MwQSy1QO0vjVCwbWxgBTWCRiXSv/UoQDdmlglMJ7EamjrD6U3loweJSuHeC0Y6MsiKYKZrHH9cuwDojH1qnxXHu/Hc9Sb9DqTv17yp6yOSUcArgbErCzpmiPHMDkXN4bOIx4r6CVmLViW6tnlHeXUTYWzeLjbUS0ihvB+i9yHTO6Yt/VNP/OjWV6/iuPd+W5lSugdA6BKl/Kag941UC2/liRdjqysaqFeZlLiMAXiNpY/kG8PVaVvEPOLR2GFGo2EhjAfuWDz09SKNVztKHqqV8rWM4U18TK5vEIMwKl59fxXHu/Lcw6mnQgQOgj+j5mZltd7ysoQjRFtCuL5Q8I8H1ViIb6+lrYhC3GWyxJjOk7BNaN0hfo41doCb7OgRtL/WTQk6racw1M2iJG7zd+8epUIvEem/r+C49347nrXUhp0Er6VdictJfeIDwj7AIGnfFEHBVWzWK0naF+Zci732iACuSPOinq8kGXja7MtluiwYaRRi9jhJ2P8AB/5JhSMFfUhqLs+kXzkRzGTnmavRUMR6/Bce78dz0CVKhB00hMY2mjuQRkD3lxLmFMIzCrsmDpWNc8ifiqxW/YlpJ1C53Za7Qc2YDMwCJuNByvEjua1vGCgblUscDB97KABTNNwnalszYr138y/gELwRlQ6XLl9fguPd+O56GnU9AmodWLC77K8R80FIIbXJWJtal57Qkf3Oggaos1azTCIV1C591N1VpEm/NE61xADRzqhnITxDvM899c5HtO9hJbQmExsj+hu7Rh56norr8Fx7vx3PQ0h0PSc4v6kuGD/dDDzaH2lwkNYFHdGXjRKRr2bmte0B6AurMBANqlzmFgqhvMVSf9EaptaxtPswbNvChSlJ+Jb9hryTd1PX8Fx7v5/9xhp1Ohp12mNCYtBjjkGksEUqiQCWz9AvzRe/Xio67ZVGozLuZVSwnSYOIpV08RrFtgiwd0NKg3h7wj7hT9yPQ9fwXHu/m/3NfQdDTpcuHUNUSKWAqV3QaNLlJy75mjDcusxRScLlwO8RYrF1xN0jxLWNro2iTgmAMzDdbsoDmN04ZWPdp4CMV359Fer4Lj3fzf79I6GnoQQwsxcIBQwnlmN5aGUJwgNNsIZuKZOCg7O/cOzvBzdmO8tYDpZ8oBbWktWoyqVuUKO8KZSoElg60zOI20R636vguPd/N/v0joaeihwpmm1kmkNSOmtylgG7jM4aR+ZrXUZ5JjXM2swO45dOyItQz2BFDc7N5c4Cc6y7qsNSagxhaG3UpQvq3i4+z8Fx7v5v9+kdTrtAqDDHki5Xs3lDK1HMPjQ21iWNZrN9mpIXJoylWa7N44q8mYSibCtouTUu8MGYihuov3Pb+C4938/+5p1XD1LhnXSKxNmNk4FwrQe5tAOpkfOUxCwyMNQTmtP3gbTTNOZsD3WY+teYxfREc4S+ZVDJhiHagPiCTSNPVXq+K4938/8AuPQ0m8Op1vMYfHDCBVT/ANsM2u8zUF74igSzQS10/dh0sZ3YHGmNSD24U4l2SBX/AE0fWZFqIWsxh8sYsvpcv1/Fce7+b/fU09F9Do6yrjSmuEAhsnEBAWW3vMxzpjSbuPswDKgtOvmeXXXEanZbfbiZWHMzrwizCeQmRnsR1j0voa+qp8Vx7v5v9wJXrvoMw5gqWbQ6dmCOkGqYAh2SFRc9lNYagDUU1xDD6SZcwiV7+QY9ywCymTNx4Km5Bm3pDpfp+K491/d/uD7K8TQjlFkvnYEmO1tcNj3H/sW2B7HECA0wpaijocP5LpncdWNjZ1EN0+7aMQnJzhBjLTZ1rpfqDc+K49347nqPqG9JTuQZExwOb8xsz6gDxyZfHtDV+CYjSzecRd4g52kiE/aimIEltmXqMzpF1Zg1p0XKXteJ2Tak/wCRDQdE17zx1ifnSUTZohDYo2PD0uGkuX0J8Vx7vy3PoIs0gXwTxdV/U40AGGBvb2LVaYrH6y6uGIHOIecVaamr0uiZSQjb1hfk7w2KL2i1JdYiDqcwKhtAhv3gSHKcKOVhoKlZAnIfqOisu+H2gz/imlENPW4eBlNCxo/5IR9PR81x7vz3PQ7bfEOe3rcJu56oZdHBMM5NsftOer252j3iU98UuOobYWJYQctKZW4KvmaJYztNTM1NpQnI7y457c3L1XeZDFU2tpVl0mnhgIzGVrVJQb4VuxIdiaM3fMQ/mh1/8cTYVu6b8MvPXatcIlfaD8T6Y5mZ8lx7tA91feJakgbMfTU/WB3A52DmOYrZvBXh4RCv6CUBLW0MF+HSOSGzQmkFRQuGTaq48pTY6c8zF2ieIILFFVkHPpekAjo4lBKSoNRIXhPvRGHtfLG2ASitAlV+6g2+8XMuoNr3ijOOHiIkzuLzGDoupvZtNTKWlhyT5Lj3U1JWpq+CLnbK1sPZ8p/smgcSvZhT+00Q2pWqr5Sz2P7IFsYcxKLYaGbEK4X5rMDb9j87zOSapo+SZFKrjSXaawCLi3UZjEaWiANZnleZgauWYTa9LxU1tbaTNg9yVWat+ET0KLSC3OAfwJSctbLfohkdN0wp+vui4MDgXlgVUD9oRBtUIG8XdfASmFczAqvU6S92FQa9Fl/Da6kHfIAgTWSAPauJ1AugkWCNVxiK33KXP0omqXshnK+ULruDK7k2GsszG9kQ4LRCCBjwRM1DK6J00whpL3dioaM093CLGWPyRWblwDtNBeY7bEKbsHG7NZLLLZZZU/qDYutJqZnhipoO8dF35iv1MQKMcSoMgVrLS7KWJaup95fuUJVN/FRzlS0/SNf6E2/cz/IQ+tKlYj6E61iY+8tNUcUJ5ypbug3itVrmZEwp0BiJXmMEr7zNtHiZMq3tNQqI0YmnqORqIcDLa5O8aU27zACmkX9J2mzPAMINld2FNod5hxX2jWFcRemYnR0j6KgQ4gmo95aaM7D65vf6xl5y8RidHWZDzRfcaRgrXzlFjHeDTHijovSzJgmaqmBsplC7cKu6O8KripnlzF5iWceIiKdouOixi9GPWpUMTIuLRzME95bvE5vvlz74ngycvkES1jps7Q2/SuCay8y1lfMtpuNoInMygzMK8RXodGt5NiqjQ1uKXtMeTMjSLGJbFGbSrlVKidGEwI7r0Tr3iibGj/1wvtEbwQh7J/UiuS9IhFUqWsWJpiLhZLvjtMWY+6TNINL/AAznU9oOW6Jufzhb0xuAFQTVEwYSXazSKeY6xjEZXRlRIEtg6WaSZXk95irnb9uUmgy+6yG7vm+Sga0CDKVojACeY3jGN4G70TRGeZZtMmTiawPrLGv0RIZFZQnanYT4qZN5shB5KmHeVN46dbl9N4FwZY/JJk3b3oOHw84dCW5FoB2XDt2ifiboQiwaR2Dum0RgjtiZMwbifAmiGWY4alxEGwgy8LAZsbMTmAB0Myq6kYLtM23uJh9vYg//2gAMAwEAAgADAAAAEJJJMmkstn24BIIABCTM2/tpJJJJJEn++2+v07APiJKbT/8A/qSSSSSTNtvt9qHHma7AE0kt/wDbkkkkkkP7f7bfpBgG3nIEtLbbakkkkkkPr/fffiaqokmcEFv/AP8AqSSSSSSuv9/86XSuPm44ACN//qSSSSSS99vv+ldKoUc6tgCNv/uSSSSSQ/8Af77rH8HiC42FEjb/AP5JJJJJL2232DbyljaGW9AASW3pJJJJJK+/+90Lb2EQrziRISW3pJJJJJK/+/8AtfpenUZarJCUlt+SSSSSQ/8A/wC+ik4crKnq2gJ6e35JJJJJD2222GmwZElWMSBJ2+35JJJJJD/++8M7jrle/JoIJ/235JJJJJD+++18XWvfjbaEwJ/+35JJJJJC/wBvt9CneMQzcoEif/t+SSSSSQ9/vt/+1Jna8Arqif8A7fkkkkkkL/77bW6Wvu7xOqgD/wC35JJJJJC/++2zZFvlohzWwB/+35JJJJJC/wD/AP7M9jkXNPrMAH/bfkkkkkkLbbf7WPTiWEB3gAD/AG3pJJJJJD++231mUiO7yyIBJ/23pJJJJJD+/wD8038SbZnhiQAP9v8AkkkkkkP7/wD/AOh1DzvG1CQQP9t6SSSSSS9v/wD7++p0H3dzCAjbb+kkkkkkP/fb5d7EKpmb+/xff7+kkkkkkr/bmD9pGee1p3JWt7/7kkkkkkP9fu0EhKzSRdeACDYr6kkkkkk8oSCgiOFG/bWuumQlJ6kkkkkgAA6yYzIYPf8A/Q4hgtAOZJJJJJCQe3/1qxTo4DABIIgsIJJJJJJHBgH+nnwzbOmAJBAEEsJJJJJJMmp2/wBfd9cjAESQAARRCSSSSSRciN9ttt01wAGASAQTASSSSSSQCYdvv/sgAAAGCQCADTSSSSSSSACN/t+sACIAMAaAQSYCSSSSSQATv9/k0TN8cdt9TbCCSSSSSSSQD/v2mkTv99v/APkW0EEkkk//xAAhEQADAAICAwEBAQEAAAAAAAAAAREhMRAwIEBBYVBRcf/aAAgBAwEBPxDy0IJEREREREREQ10peeT3Ggu63BO+FZkV++4THWlHColSCOCE4hkREbctXsH26ddg1KDINQb4RpjYbvDZX4PfradioJTiDpCQvLDbKLfg9+tp1pVkFGCzoZCPRhG6IymMtlytl9hp1/Zj/CxlWM4FtRKwhDJ4MohJM/Owfbp14KCdZgqVky+eC0y4NcXkiQvwTInBO+u06KMSiTehjY8AeS0+EI1waFGNwbForWRZJPXadScYtFpDECIDwN7Li06NBtPRBrIoiGJ312nTsSzxbaQbUhCVoxvAng1umAkNxMi5+D/IadF1H6xgP5Q+YZ4LFb2ICXgIYcZCfok0G2ggmKPb6z9UbhRATAfeDpLHMBkXMeDEhlK/BuvAzg9vrP1R5IRRmDXwRtjUZtGbvCkwKNkVRCNOMQZMCUuGqEj6z7dOpkdf4JYRsVCQiDdfDQWsgSlEHlQgLqPt06lwiKiTnRWOcGLEzQeyjVEhYWuk+3TqsLIN1ziIWxKkJZLQjCSwwKV8JcL1BdJ9unXI7dKIX6OIbqCTK0POeHHCJpKUQncdR9unXRRbwnGgxkWMmFxYG6G6PigYUpnqPt064mYpCvPhyhuyNsTtDfbQrQYnxiLWJJa6z7dOyAqlDZRj+QxloxWSXgc1Q4SmBDwe/ZadTENDIdLZD1xMNI/wid8GtDWP9Ebe007XyIWxtDhljgdFMfeNvaadadfD6lFFZf8ASJVFH6LWLcE9pp1wZkotDHBhMBREFhmwtYIfxQlwLCNjRpwssUC53xsKhk9XTzpSmfotcFW2bcJDrk4C5pSUxk3R0oWSTyfbpzSlL4tAlBXRbFxQbyUnih0kVfhS+loMvT+lcMZLXCZ8GPfg2QqEJcNvlfRWvB6KysrFrlGQc9lzYQ0hpUi5aPjPQ2f0ed9S7mwPioqG8eFXNKuLcRg7HwNxoxqX204iCBsvitmiDeeIf9MfOJwxi9y8XleLd4Tg8lEqNTxST2NE91InC6tDd4vgv4K635L+Cul9C/gTthOGQX8xe5//xAAhEQADAAIDAQEBAAMAAAAAAAAAAREQMCAhMUFAUVBhcf/aAAgBAgEBPxDl63VFQ9y95rb63XlS/gLb62TKQ8vKJuLb6KLVUsUpZmotIJdYj2lt9YWr1w/RLoiEuyIiEiEPWwtv14RS8kMkqN2hELOyWJPRFUL0bEylEha9hbfr4rl3QXTOkfUoboZ6xqyMGEVZ6JrLb9fFckrpIhqzoiO54JnZGdC07LPAyTgnOQtv18qXFGXvsQLseFD7EYtkxJsSC7KJtD1Y9alt+vW8HR6GqWNxKLLsJdcHx61Lb9ehZ8n0SMTMQX9kkBUKJhB8ipDqYUelbfr0wo8Ych8E4btHUVQ0DPRMdS0v4I16NEPvglSMj4Lb9ehC9GHko3ZV0QNIJoYfoRNCg1lOmFovNZbfr0U8Fga/7D6Yk12NR0DZj6logx1BwK0NRpC9F5rLb9epHq8K8EJwajVcjUuE/B6i2/XsD0YjLDt6N9c7RjWyW369bH2JKdFFY2MgpKs7Ni1RqCSYaoT4xqai2/XrUSHRSnmjWMZaJHj0Lwfgx4xurUW369fXDkqF2+8dmeISQwv4JDw1RDErOmstv16YQfSFrXF+HbHQ7RMdvRjZWM8Hustv17RY8L2fRtCRkYoaH6LsWwtv17H5BvuHhDEkxQ4dCULBOj93S2/XopS5jKD99CZHbvJKjxamwtv16mfM0EJKdiMTNiUw1RKD9w8bC2/Xt6Meh15h68WJSooXD1Ft+vTRDJafblCZc9F6N5eChkNMmIxLktv18Ji4jIIkdFRzQmHiDK5p6QjEjFDLIiyvJbfrxCEIdCXQyY7CyiwbPRO+FMXKVZJYuHGQpcrbPSCWEQQJQiLehpIlP5CvrDQlGeuWEExI6YmJwawtq9fCcYsNhtdSvZPDPXLWKgSiG+L4Td6yvNDQsQ+hHQae4pxfbBCjSuD3tVkZGJdE1RH/AA7IhJYoh6ky5e77crD1Moi4n7oTFw9Swyfhf4ph/uYvxvl2JDtyvC8Lzo/x3klzpc3msL/CPcuL0//EACgQAQACAgIBAwQDAQEBAAAAAAEAESExQVFhEHHwIDCBkaGxwdHx4f/aAAgBAQABPxD6jsYAFQW8wY+J+58Hf3Pk3+z4m/uCPxv3PjX+z4V/sH2Hy7gnxv5gjc+f+0R8T+Z8i/2fJv8AZ/6r/sbfifuYVLTjZ/MKCwaYv5ieRrCbP5hqq2k/9IPf9r/s/wDVf9nA+J5nyL/Z8i/2fGT+Y1/E/c+Rf7PkX+wo38TzLfifzPmn+z5p/s+af7Pmn+z5p/sL/ifuI8UdVtWv3VfwspswemkGpfuBYQtCkqpy9ctBvpjKiK0hGNlUM9iZZW99jESqZK0RrznTUwCDuJHadkrepAXdDuBuM7iriVMXTu4qlAcXAi0ourgUbH2j9Db6alE+a6/dA8P/AEQVU0lMCHMC8QFagOCFDuV6gHES6AywCroyvB7w+diuL6L3EJ6wW+C06lmKqBb1lfjGehzwbCi8koWriLGc8leOYblKFkxfLSBAe6lcHzNBDvMFgRD1hcmdhmoC8hjWYr0qU5mI1YFwKZ7JR1EOMepVJPkuv3ben/RKqvRVgnosn7JX6LEqmPNdZfaG48rr+O6grMmrOSjviclgA70RIhG3ZOh1GRzktupVzZHiBQEddnLLjlBO6PeJBunLujUGJQkeK8woNcrKiXypWHlFEjB10B4YjCm3ud+0a29HRAqBbN5VfQFpPh+v3Rk+FpWoK+gCUe8LnMr0RbV5sRxbhSrdwNumzHmOK5jBtpHcvpeJbVgUqX0dmpqGYi1NA/qNneeB5mU3xd0VxSRllsNuLq9pSHuiPzzDSs3/AIzxD3lQWEek8TOMFstZi3DTMB0jBxuEa5g8AqIbFX8/8iPR2QMSnuU/QKpJ8P1+7852mWpzQTCiGSUejDHqwoSq/wAAR1Q9+uU58JYlOmQnLfb1L7UdyHlHMDAQifMK6HiIGhb9O2X+RYuYcD8eIgq0AVR11O/fgHR4jjZPS/REMt1EMoeYcZTB/tH8f4iUB6tmR9iKJxy3ZY8kpbmZyYkSZSqTCPoTMWQho9R7J7I5bnw/X7uY+FpZACbalKmIc0noZgQF4nWNwc4M3vwCJOMBgmoF2Mf/ANJQqIpLg6ISS+TJ/MW/iAOJyDGRDas8glPd5OufUWxlvaHzAz4mxBvYLWSzzF2+4C38oXuERaxUz5BtwTMkDQxyq5lxUGZ8VHBFPpaveGoj1NGIaPTQmevQ3Pj+v3W+DtORWYa9Dsmr6OaagSnFXa8BuO2+zIEd1EK8zilgT+SGaeJVfn3gMWcYmNToisKENupzUIF1K1BOMZhI52hVz8uGLYbDr0g8UCWhxbIz+5TKuBAfcri8KSF0HEK/hvpqakxfQ0em4lktB3DXz8fuh+NtA7hl9AWIFFTWDUGyZIXUvIrwhkqIgpvHfl/5B2Hx7q77Y3ILb+oKxdS9l6fqFbwKFdMYVYgdwglm952WShZUu5XD7wXlfsYotNQcsasR09ISgDVeYTpBLajCbNAbN7jpo0NeP9inxQnJym/UO8rOPq+B6/d+e7QtBjAqXUwLmD0uIUbuXd4sDmLCct0v5LgZCUyWsU27QGg8RFdjg5hVVS7Xglw0g0dLh6Yoa68QOVn7sdGI2pWcmwIZfypVqUIeJV95ABUKUtuLuQnAi65RmB6m4WnkI2PwBl3Exljpl6rXoOD6/gev3fnu009TUG5rLCUazMut+YSKUa6LhLirLzzB4ApQpZdLJwcyrVWIKyztE6KW+A+ICmK2BZol6oyGjmZqkHVRWpafYhjXUC0ywyjqCQBLVvmbUkWXy+8BERK+bxLpr3EVf0VO4VmM3kqyzLgPSvL1svpuV6G58T1+78t2hr0AhiG/TX0uXvBfFsXMFxsRzSDs+0oboADCtGqUHNuIlPFolybvmCqo2Adq+IRYtQUr/CEVV2bCHqhuhRhsq2IB/smPxxrs3FqJ5veDqNIA1L+QzMQQ68ZzDicW+QVdzcCM1RXRgpNkzxdE6jC2tiK/RRd8+mcFoK9Dc+J6/d+W7Q1CTJKdfzAjNswGVeI1pBeNStbhqwgofmXKVpRSjGD16mEalNHKTZYxs9Vr32Dg5iUfNg9l4vMVfhrTrbEdmByUBYBg6qLJWjKDczysRefDFtiWsgAt/iBZAWJGiy8woxuE/X7x1KXOhGfQv+Sq3SxuMS6sWmkOTxmpQK12goI7zqIYC9SitQpFMbehufE9fu/Ldoa9IL9NppDcW4K3/MQgLODQ1xEHCD3IHuysrertqPU4z68w2z7SRsvyOo/2xGoNBNHAUQTw+CIkTwTLRE2jiZojiKswRepcBY4+2VRUWql/uosW7rG10jo7pLZ0ePFgQd18Fw0y4aBaljZgHuDLVWEuOGOs5YpNpx9B3Dc+J6/d+W7Q16W3ptNPX2ae4y+DrslsKgGSwXMWGucXtFpKG+mJLXCt3E4Ct4IQe3NI7PExUxSy5C9wk7wBCcypTxB/hpZq5cZ63R48yk4CqZRgVWjRyVEKM03CWRh9lEa0ZbdwxZ4nEd+m049Tcdw3Piev3fn+01PSGpf15SeXS0vD+6jkJvXJMn8RfTW7ljbBZ7RYy2DWZT7blNXzE61DJdmMxrgY/PUjiULFKOpvk1k5uHQAa6SzFHa4JdAs12iXjxeiVLgfyddxmrNIr9Npx6m47hufE9fu/N9oX+ECvSiPj6IgtiUleljuFel8vDuMa4LzqAcM9uj2j0Nj8sCt5hTXUqrCqutjM0BCKGXDOkuELF3aLbdFri5XAEW//YClB6JiWp1iKBi+BGkHBcpeYbQIZMe/Q3KVEp9Dcdw3Piev3fm+05etw5v6rBRLzdQTIlfeBW5qgCEdflaxEFU1U2xCpNgpdBDYjP0XvM4VFjVs0I6I+S0DaRefabXlDaHSBc7Xi+4wqyAww6ZhJGrfuiA7auON2KDiGvlUGE6LmipS4g/8+objuG58T1+7832nL1N/VquZwVwnD3MdUShAyDwMbZRltVMnQhucdRrzaZSvCKMa6V+AlDH3zJCt4UmXxAuBKbcXD+2DlDD58w411sCYGUaDYpuGKV4SWnAYAb99JWb/ADFJmmHOcrADfP0Dj1Nx3Dc+J6/d+b7Tl6m4swcwU5jX1v8AnFVKLIdnKbSB2FZYBtC7QXyiAGD/AMj++sCMEBrPILHvcLwA0UTzLDWMWs/OC1dRXiKoYa4IYgex5SJsF1P4mItP5sksausFQcxfU49b9Dc+J6/deH52n957INkGpM2Ud/StEIBliJrGaWIskefFQzeVJgp5fEvgxPZCwPRAGswD+03CnE0WB6yzCCe6x+E0UK9Z+YIBIOhcieZqekuA6hskeB1nEsVrM8sxnqJR4KlZt39BlmH1fA9fu7vztFdemiBQilsI6g36NKTCIhpqvAkPGG+oB4GW82jlGoT0BSVvdy6JhkaRL/EDrjhax6hj84saiRbDJHijgZvCUOKaieTVFiGT1pctTXJdq6uCcKqPOC/xGFXvmAMrBsiCBuP1fA9fu/N9vXR63A1nEu5iMv0MofmDYBt9uJucHZRH5XntQZZtJCebcLcbeeAhD5mQl/yiKj1bEcDFHFqW7QEQAZWyCIlYBbXiIUAA0ZhrcP7JmOSpx9MOZdzRM/z9JafA9fu/N9oTcrAo+iyDC3ojphmdZxHp4tmdcLH9srElSP8AFcxiTDWfPruDC2EiXuBrHmLKpikAKOkBkggxLbUb9ajZtDqJnIO58GYdmBwTipdL4IdHondMAMI79KmmoWGWRhb9TE+B6/dF+flKJ7INn0mdQaYFT1CELV4FliCI3WCVcI8XzBbHpZQ7PMufCxt377mHgrROV8Ie3RM0hbp0QM4B+ZKxbaIcp/iKH20jfuPMVjgh33cUBFxnTwiEFDb5geGkri3UVG4WGV+ZQ809O5eacMtWvxEyQqVOD6Kdeg+B6/d+W7Q1LgAZg36WSzuDnGYirJhJBCx/7SzBNVzfnSpmDxkzY/8AyIEE9hWcgYCITxMHc09S8C6jwy5GF9oU9vINStOVgOpaMHFRiRkCLlYWXmUlUbhl1wFwhys7KV3EbiyDqEbV5IfFw0vteCIii5W+iQKrWAJ+GEZBvYRcS0ZFKu8RHcI6ufA9fuuvnZQhv0v+JiswdxjH8qSiCbL38rghYNO3uxiQsENXbeCKxlZbezVeJqSyCrlnxTKkt6AC18sxMy4CLaU1mU/jP+jXFiotg0IQIMGMzDztbcevt24hglDcX4GJmTGIxzoOZYasDYkGlUYwYDi27qZGjX4mMescf22+8dc/CP0D+ViOjV21+FktsKvSbl0oof49Tc+P6/dWH5Wg0LV13r8wFuXwxF4Vx2/BHURphUODXbqHtB6zYCg6pFYR3W/uZ6gGzmHSdAWVDupoiyVokMYkla6KhQT8t2rMo33UzEQbYyTUuKZF2wCxejWBydWX+oCAAdJpUCsGIkOPaiKgD8YlGjBGIMMRiFBm3DAJTCF0/wDkJooN2IKH8DwwrVLajn9wGXBobISKC/c6cARriA/MwcSiF+edBMQ2nXhr9otKtHoZlihrHJzPh+v3cDNogLttG6MZo+KuIR73gPneBSO5dn5YhZ7lYhSNxas8zzYhMpgLJGVEUBu4oLWUGHhYFRbNVDFN9jsEdktGsY4ru48RrC6YGvI7mzecrLWBi+Y5Wn2nNGLFGd/YIt1DaAbm+2cuZgUgstZWA9Bhgg2OoCAo15P+Q7TAV/6omKyxdzz7ykL2XtuZRx3E2DIx1GaYzLkU1zUoAu3MJ166P35iLLk9pXn9yivoMX0hsnw/X7tVeoCucdx3AJ1nZ7dQJQ4ZbqKhbkWdoFSocG5R1Vx3uWy48dJubRahqLn6TsJY35TUhwwBsl3A6hDI2io9zryjfgL9+Bwy66FneGsEFKMGX4S/dWxLYL2GIIxjuoS2KiqFSEjpOIYGtIkW5VD+EfIwo8+5DrztYPdMq1W3EHt3CuLPDDubu+e5Vbhn0oslh7pWVKEAvC/Z7IUPFxQaE89k3tLQAPwEfz92zJUuwe2UbecAyxRoSgrri5SlA1NNXAGwyVBYLiKcz0F/mUtysrn8QEPA0MDdMBOZXLkL8DFx3YND87g4O2lh9ypZXBYg6ZaPxwZiNAVsg6r8f6Y4SlwKmL2KqbZobYvANNT9paAlqv4RW2uxo/UEt+QMEMgOMblfIO2KJiYCQKK9BK9ZVtMYthaCxACHj7qz84D51MXpaCYrqFi9QW6uqgQZ/bA0yO74mSzWl0Q90tVe2UNvEDpBO06oHbBJRr4ICmXJ19ogAbfnEYAHFYg+mL6vaCzaDWv6jirlFW3m5SFvhpD+Iv46wYTP/F0/3EsIn6gXftVYC+VxaYbg+ZKrKDolBza29wqt5e4pa7hUzFeT9TdYjTMmoka4hqMIhphp8xWjlfu860OYK7Yo1nwigCa6S7NZdR22rowdJTYrOITtHY4jhzA2uO2VKXKJo04wR42Rws5oTWLGAQVOPMXSFN5xEmj5MYXcDBZeBMhTMvqa3TFQ9hGmkMFXsFUh40nOULIbDHWY4JgAGHRH5U6TJRiJV6zMEXmWCXcxKzC0QcQN9o1pzAZC4KA193nyioh5iVrFuBXicXw/CWcC4HRuDh2IPE1AYscDKS7ZVxHVwH7RW9pCja9nUVOhi1sfFR4hThi8ibSMqE4gwfslk4rgTiGtFRLJpR5goofKWxVvmCHSZBe4GbhHsS5bizJIR94ARpIRnBe2KI78S0wRaVTHbfd4EEVLcTqqtwpoMXSG86k7zyQE1TavcBBXQcxRoVdCxnmpVjTKVxTjpAoAXGowOaRuNSUMlbiBO1a3EGBP1EMEU4uKN16uAyfsiOiD1KRVfMRtbOGIsa/mE5rYsAygqNW7zGGF8Bl+5RKmk0jLGGw51KQXScwj9hMPuhLwiWdEyaWqIOyCbLSO4pHCeeoWAeznllrJ4AuoZxPmUIrAjtzcU8tKHl7xaxV8wZpuLTWYVC6dHUxIKYg4cm4gerLFVKFhU4yhsAHohgdORn7YMRqg4pjgKg5GVaFfmVFoeqiqlQW+JYaCzuK3iFG7v0KuJaYSZZcZgvUYlnBgyMxRtDEVo7+6VbLHr0z5+iEGyE2nFEFbOYVz1BHHEq8EWi0MWZYNRXlcUzBxjlMwV2pAFh3vuWnAXLqVAAJxLSlUtCJSucKIUEvjBIg2kGbE7GZGk7YjpanLMUuzxpAyDfEDRbqYTO4l2APIy+q/MUEVqOg1QxKItSsCsouPCoIpaiVizuXE8jO2OcVo8/do2zbdMEcEFJY1xoZ5Nn5gFrIs94ZH3SzX8LxKUAaEIHmNbgrU0lxAcZhKc4QiktHBAvTe5FFwC4LnKOkaYglUamxYmriLuXN5GiUoZ8QEEh7xWhu5UBxNxqRzKaSpfrFa3M30wYeFkOfsav/Z"
}

And voilà, you’ll notice the Api results will transform the initial value into a String value telling about the recognized expression found in the image. Additionally, the preprocessor is having a specific expressions node in the result providing with the full expressions scores. The Rule identified and use that value to trigger the Email as notification.

"value": "sad",
"preprocessor": [
{
"name": "aidc",
"mode": "faceExpressionRecognition",
"initialValue": "1658669719797000000-faceExpressionRecognition.png",
"status": "completed",
"expressions": {
"neutral": 9.418351254453228e-8,
"happy": 1.1365385715889076e-10,
"sad": 0.9999997615814209,
"angry": 7.31789351338108e-10,
"fearful": 1.6018465487377398e-7,
"disgusted": 8.681204626687089e-13,
"surprised": 6.788646977895496e-9
},
"recognizedValue": "sad",
"expressionValue": 0.9999997615814209
},
],

To have more details on Datapoints, read the technical documentation.


This content originally appeared on DEV Community and was authored by Mathieu Lory


Print Share Comment Cite Upload Translate Updates
APA

Mathieu Lory | Sciencx (2022-07-24T18:44:37+00:00) How to use t6-Iot image preprocessor to trigger action based on image facial expression recognition. Retrieved from https://www.scien.cx/2022/07/24/how-to-use-t6-iot-image-preprocessor-to-trigger-action-based-on-image-facial-expression-recognition/

MLA
" » How to use t6-Iot image preprocessor to trigger action based on image facial expression recognition." Mathieu Lory | Sciencx - Sunday July 24, 2022, https://www.scien.cx/2022/07/24/how-to-use-t6-iot-image-preprocessor-to-trigger-action-based-on-image-facial-expression-recognition/
HARVARD
Mathieu Lory | Sciencx Sunday July 24, 2022 » How to use t6-Iot image preprocessor to trigger action based on image facial expression recognition., viewed ,<https://www.scien.cx/2022/07/24/how-to-use-t6-iot-image-preprocessor-to-trigger-action-based-on-image-facial-expression-recognition/>
VANCOUVER
Mathieu Lory | Sciencx - » How to use t6-Iot image preprocessor to trigger action based on image facial expression recognition. [Internet]. [Accessed ]. Available from: https://www.scien.cx/2022/07/24/how-to-use-t6-iot-image-preprocessor-to-trigger-action-based-on-image-facial-expression-recognition/
CHICAGO
" » How to use t6-Iot image preprocessor to trigger action based on image facial expression recognition." Mathieu Lory | Sciencx - Accessed . https://www.scien.cx/2022/07/24/how-to-use-t6-iot-image-preprocessor-to-trigger-action-based-on-image-facial-expression-recognition/
IEEE
" » How to use t6-Iot image preprocessor to trigger action based on image facial expression recognition." Mathieu Lory | Sciencx [Online]. Available: https://www.scien.cx/2022/07/24/how-to-use-t6-iot-image-preprocessor-to-trigger-action-based-on-image-facial-expression-recognition/. [Accessed: ]
rf:citation
» How to use t6-Iot image preprocessor to trigger action based on image facial expression recognition | Mathieu Lory | Sciencx | https://www.scien.cx/2022/07/24/how-to-use-t6-iot-image-preprocessor-to-trigger-action-based-on-image-facial-expression-recognition/ |

Please log in to upload a file.




There are no updates yet.
Click the Upload button above to add an update.

You must be logged in to translate posts. Please log in or register.