FiveCrop in PyTorch

Buy Me a Coffee☕

*Memos:

My post explains OxfordIIITPet().

FiveCrop() can crop an image into 5 parts(Top-left, Top-right, Bottom-left, Bottom-right and Center) as shown below:

*Memos:

The 1st argument for initialization is size(Required-Type:i…


This content originally appeared on DEV Community and was authored by Super Kai (Kazuya Ito)

Buy Me a Coffee

*Memos:

FiveCrop() can crop an image into 5 parts(Top-left, Top-right, Bottom-left, Bottom-right and Center) as shown below:

*Memos:

  • The 1st argument for initialization is size(Required-Type:int or tuple/list(int) or size()): *Memos:
    • It's [height, width].
    • It must be 1 <= x.
    • A tuple/list must be the 1D with 1 or 2 elements.
    • A single value(int or tuple/list(int)) means [size, size].
  • The 1st argument is img(Required-Type:PIL Image or tensor(int)): *Memos:
    • A tensor must be 2D or 3D.
    • Don't use img=.
  • v2 is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import FiveCrop

fivecrop = FiveCrop(size=100)

fivecrop
# FiveCrop(size=(100, 100))

fivecrop.size
# (100, 100)

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

s500_394origin_data = OxfordIIITPet( # `s` is size.
    root="data",
    transform=FiveCrop(size=[500, 394])
)

s300_data = OxfordIIITPet(
    root="data",
    transform=FiveCrop(size=300)
)

s200_data = OxfordIIITPet(
    root="data",
    transform=FiveCrop(size=200)
)

s100_data = OxfordIIITPet(
    root="data",
    transform=FiveCrop(size=100)
)

s50_data = OxfordIIITPet(
    root="data",
    transform=FiveCrop(size=50)
)

s10_data = OxfordIIITPet(
    root="data",
    transform=FiveCrop(size=10)
)

s1_data = OxfordIIITPet(
    root="data",
    transform=FiveCrop(size=1)
)

s200_300_data = OxfordIIITPet(
    root="data",
    transform=FiveCrop(size=[200, 300])
)

s300_200_data = OxfordIIITPet(
    root="data",
    transform=FiveCrop(size=[300, 200])
)

import matplotlib.pyplot as plt

def show_images1(fcims, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    titles = ['Top-left', 'Top-right', 'Bottom-left',
              'Bottom-right', 'Center']
    for i, fcim in zip(range(1, 6), fcims):
        plt.subplot(1, 5, i)
        plt.title(label=titles[i-1], fontsize=14)
        plt.imshow(X=fcim)
    plt.tight_layout()
    plt.show()

plt.figure(figsize=(7, 9))
plt.title(label="s500_394origin_data", fontsize=14)
plt.imshow(X=origin_data[0][0])
show_images1(fcims=s500_394origin_data[0][0], main_title="s500_394origin_data")
show_images1(fcims=s300_data[0][0], main_title="s300_data")
show_images1(fcims=s200_data[0][0], main_title="s200_data")
show_images1(fcims=s100_data[0][0], main_title="s100_data")
show_images1(fcims=s50_data[0][0], main_title="s50_data")
show_images1(fcims=s10_data[0][0], main_title="s10_data")
show_images1(fcims=s1_data[0][0], main_title="s1_data")
show_images1(fcims=s200_300_data[0][0], main_title="s200_300_data")
show_images1(fcims=s300_200_data[0][0], main_title="s300_200_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(im, main_title=None, s=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    titles = ['Top-left', 'Top-right', 'Bottom-left',
              'Bottom-right', 'Center']
    if not s:
        s = [im.size[1], im.size[0]] 
    fc = FiveCrop(size=s) # Here
    for i, fcim in zip(range(1, 6), fc(im)):
        plt.subplot(1, 5, i)
        plt.title(label=titles[i-1], fontsize=14)
        plt.imshow(X=fcim) # Here
    plt.tight_layout()
    plt.show()

plt.figure(figsize=(7, 9))
plt.title(label="s500_394origin_data", fontsize=14)
plt.imshow(X=origin_data[0][0])
show_images2(im=origin_data[0][0], main_title="s500_394origin_data")
# show_images2(im=origin_data[0][0], main_title="s500_394origin_data",
#              s=[500, 394])
show_images2(im=origin_data[0][0], main_title="s300_data", s=300)
show_images2(im=origin_data[0][0], main_title="s200_data", s=200)
show_images2(im=origin_data[0][0], main_title="s100_data", s=100)
show_images2(im=origin_data[0][0], main_title="s50_data", s=50)
show_images2(im=origin_data[0][0], main_title="s10_data", s=10)
show_images2(im=origin_data[0][0], main_title="s1_data", s=1)
show_images2(im=origin_data[0][0], main_title="s200_300_data", s=[200, 300])
show_images2(im=origin_data[0][0], main_title="s300_200_data", s=[300, 200])

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description


This content originally appeared on DEV Community and was authored by Super Kai (Kazuya Ito)


Print Share Comment Cite Upload Translate Updates
APA

Super Kai (Kazuya Ito) | Sciencx (2025-02-04T20:13:55+00:00) FiveCrop in PyTorch. Retrieved from https://www.scien.cx/2025/02/04/fivecrop-in-pytorch-2/

MLA
" » FiveCrop in PyTorch." Super Kai (Kazuya Ito) | Sciencx - Tuesday February 4, 2025, https://www.scien.cx/2025/02/04/fivecrop-in-pytorch-2/
HARVARD
Super Kai (Kazuya Ito) | Sciencx Tuesday February 4, 2025 » FiveCrop in PyTorch., viewed ,<https://www.scien.cx/2025/02/04/fivecrop-in-pytorch-2/>
VANCOUVER
Super Kai (Kazuya Ito) | Sciencx - » FiveCrop in PyTorch. [Internet]. [Accessed ]. Available from: https://www.scien.cx/2025/02/04/fivecrop-in-pytorch-2/
CHICAGO
" » FiveCrop in PyTorch." Super Kai (Kazuya Ito) | Sciencx - Accessed . https://www.scien.cx/2025/02/04/fivecrop-in-pytorch-2/
IEEE
" » FiveCrop in PyTorch." Super Kai (Kazuya Ito) | Sciencx [Online]. Available: https://www.scien.cx/2025/02/04/fivecrop-in-pytorch-2/. [Accessed: ]
rf:citation
» FiveCrop in PyTorch | Super Kai (Kazuya Ito) | Sciencx | https://www.scien.cx/2025/02/04/fivecrop-in-pytorch-2/ |

Please log in to upload a file.




There are no updates yet.
Click the Upload button above to add an update.

You must be logged in to translate posts. Please log in or register.