RandomResizedCrop in PyTorch (3)

Buy Me a Coffee☕

*Memos:

My post explains RandomResizedCrop() about size argument.

My post explains RandomResizedCrop() about scale argument.

My post explains OxfordIIITPet().

RandomResizedCrop() can crop a random part of an image, then resize …


This content originally appeared on DEV Community and was authored by Super Kai (Kazuya Ito)

Buy Me a Coffee

*Memos:

RandomResizedCrop() can crop a random part of an image, then resize it to a given size as shown below:

from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandomResizedCrop
from torchvision.transforms.functional import InterpolationMode

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

s1000r1_1origin_data = OxfordIIITPet( # `s` is size and `r` is ratio.
    root="data",
    transform=RandomResizedCrop(size=1000)
)

s1000r01_10_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[0.1, 10])
)

s1000r01_1_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[0.1, 1])
)

s1000r1_10_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[1, 10])
)

s1000r09_09_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[0.9, 0.9])
)

s1000r08_08_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[0.8, 0.8])
)

s1000r07_07_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[0.7, 0.7])
)

s1000r06_06_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[0.6, 0.6])
)

s1000r05_05_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[0.5, 0.5])
)

s1000r04_04_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[0.4, 0.4])
)

s1000r03_03_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[0.3, 0.3])
)

s1000r02_02_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[0.2, 0.2])
)

s1000r01_01_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[0.1, 0.1])
)

s1000r001_001_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[0.01, 0.01])
)

s1000r0001_0001_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[0.001, 0.001])
)

s1000r00001_00001_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[0.0001, 0.0001])
)

s1000r2_2_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[2, 2])
)

s1000r3_3_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[3, 3])
)

s1000r4_4_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[4, 4])
)

s1000r5_5_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[5, 5])
)

s1000r6_6_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[6, 6])
)

s1000r7_7_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[7, 7])
)

s1000r8_8_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[8, 8])
)

s1000r9_9_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[9, 9])
)

s1000r10_10_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[10, 10])
)

s1000r100_100_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[100, 100])
)

s1000r1000_1000_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[1000, 1000])
)

s1000r10000_10000_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[10000, 10000])
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=s1000r1_1origin_data, main_title="s1000r1_1origin_data")
show_images1(data=s1000r01_10_data, main_title="s1000r01_10_data")
show_images1(data=s1000r01_1_data, main_title="s1000r01_1_data")
show_images1(data=s1000r1_10_data, main_title="s1000r1_10_data")
print()
show_images1(data=s1000r1_1origin_data, main_title="s1000r1_1origin_data")
show_images1(data=s1000r09_09_data , main_title="s1000r09_09_data ")
show_images1(data=s1000r08_08_data, main_title="s1000r08_08_data")
show_images1(data=s1000r07_07_data, main_title="s1000r07_07_data")
show_images1(data=s1000r06_06_data, main_title="s1000r06_06_data")
show_images1(data=s1000r05_05_data, main_title="s1000r05_05_data")
show_images1(data=s1000r04_04_data, main_title="s1000r04_04_data")
show_images1(data=s1000r03_03_data, main_title="s1000r03_03_data")
show_images1(data=s1000r02_02_data, main_title="s1000r02_02_data")
show_images1(data=s1000r01_01_data, main_title="s1000r01_01_data")
show_images1(data=s1000r001_001_data, main_title="s1000r001_001_data")
show_images1(data=s1000r0001_0001_data, main_title="s1000r0001_0001_data")
show_images1(data=s1000r00001_00001_data, main_title="s1000r00001_00001_data")
print()
show_images1(data=s1000r1_1origin_data, main_title="s1000r1_1origin_data")
show_images1(data=s1000r2_2_data, main_title="s1000r2_2_data")
show_images1(data=s1000r3_3_data, main_title="s1000r3_3_data")
show_images1(data=s1000r4_4_data, main_title="s1000r4_4_data")
show_images1(data=s1000r5_5_data, main_title="s1000r5_5_data")
show_images1(data=s1000r6_6_data, main_title="s1000r6_6_data")
show_images1(data=s1000r7_7_data, main_title="s1000r7_7_data")
show_images1(data=s1000r8_8_data, main_title="s1000r8_8_data")
show_images1(data=s1000r9_9_data, main_title="s1000r9_9_data")
show_images1(data=s1000r10_10_data, main_title="s1000r10_10_data")
show_images1(data=s1000r100_100_data, main_title="s1000r100_100_data")
show_images1(data=s1000r1000_1000_data, main_title="s1000r1000_1000_data")
show_images1(data=s1000r10000_10000_data, main_title="s1000r10000_10000_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ 
def show_images2(data, main_title=None, s=None, sc=(0.08, 1.0),
                 r=(0.75, 1.3333333333333333),
                 ip=InterpolationMode.BILINEAR, a=True):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        if s:
            rrc = RandomResizedCrop(size=s, scale=sc, # Here
                                    ratio=r, interpolation=ip,
                                    antialias=a)
            plt.imshow(X=rrc(im)) # Here
        else:
            plt.imshow(X=im)
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="s1000r1_1origin_data", s=1000,  
             r=[1, 1])
show_images2(data=origin_data, main_title="s1000r01_10_data", s=1000,
             r=[0.1, 10])
show_images2(data=origin_data, main_title="s1000r01_1_data", s=1000,
             r=[0.1, 1])
show_images2(data=origin_data, main_title="s1000r1_10_data", s=1000, r=[1, 10])
print()
show_images2(data=origin_data, main_title="s1000r1_1origin_data", s=1000,
             r=[1, 1])
show_images2(data=origin_data, main_title="s1000r09_09_data", s=1000,
             r=[0.9, 0.9])
show_images2(data=origin_data, main_title="s1000r08_08_data", s=1000,
             r=[0.8, 0.8])
show_images2(data=origin_data, main_title="s1000r07_07_data", s=1000,
             r=[0.7, 0.7])
show_images2(data=origin_data, main_title="s1000r06_06_data", s=1000,
             r=[0.6, 0.6])
show_images2(data=origin_data, main_title="s1000r05_05_data", s=1000,
             r=[0.5, 0.5])
show_images2(data=origin_data, main_title="s1000r04_04_data", s=1000,
             r=[0.4, 0.4])
show_images2(data=origin_data, main_title="s1000r03_03_data", s=1000,
             r=[0.3, 0.3])
show_images2(data=origin_data, main_title="s1000r02_02_data", s=1000,
             r=[0.2, 0.2])
show_images2(data=origin_data, main_title="s1000r01_01_data", s=1000,
             r=[0.1, 0.1])
show_images2(data=origin_data, main_title="s1000r001_001_data", s=1000,
             r=[0.01, 0.01])
show_images2(data=origin_data, main_title="s1000r0001_0001_data", s=1000,
             r=[0.001, 0.001])
show_images2(data=origin_data, main_title="s1000r00001_00001_data", s=1000,
             r=[0.0001, 0.0001])
print()
show_images2(data=origin_data, main_title="s1000r1_1origin_data", s=1000,
             r=[1, 1])
show_images2(data=origin_data, main_title="s1000r2_2_data", s=1000, r=[2, 2])
show_images2(data=origin_data, main_title="s1000r3_3_data", s=1000, r=[3, 3])
show_images2(data=origin_data, main_title="s1000r4_4_data", s=1000, r=[4, 4])
show_images2(data=origin_data, main_title="s1000r5_5_data", s=1000, r=[5, 5])
show_images2(data=origin_data, main_title="s1000r6_6_data", s=1000, r=[6, 6])
show_images2(data=origin_data, main_title="s1000r7_7_data", s=1000, r=[7, 7])
show_images2(data=origin_data, main_title="s1000r8_8_data", s=1000, r=[8, 8])
show_images2(data=origin_data, main_title="s1000r9_9_data", s=1000, r=[9, 9])
show_images2(data=origin_data, main_title="s1000r10_10_data", s=1000,
             r=[10, 10])
show_images2(data=origin_data, main_title="s1000r100_100_data", s=1000,
             r=[100, 100])
show_images2(data=origin_data, main_title="s1000r1000_1000_data", s=1000,
             r=[1000, 1000])
show_images2(data=origin_data, main_title="s1000r10000_10000_data", s=1000,
             r=[10000, 10000])

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description


This content originally appeared on DEV Community and was authored by Super Kai (Kazuya Ito)


Print Share Comment Cite Upload Translate Updates
APA

Super Kai (Kazuya Ito) | Sciencx (2025-02-13T01:56:58+00:00) RandomResizedCrop in PyTorch (3). Retrieved from https://www.scien.cx/2025/02/13/randomresizedcrop-in-pytorch-3/

MLA
" » RandomResizedCrop in PyTorch (3)." Super Kai (Kazuya Ito) | Sciencx - Thursday February 13, 2025, https://www.scien.cx/2025/02/13/randomresizedcrop-in-pytorch-3/
HARVARD
Super Kai (Kazuya Ito) | Sciencx Thursday February 13, 2025 » RandomResizedCrop in PyTorch (3)., viewed ,<https://www.scien.cx/2025/02/13/randomresizedcrop-in-pytorch-3/>
VANCOUVER
Super Kai (Kazuya Ito) | Sciencx - » RandomResizedCrop in PyTorch (3). [Internet]. [Accessed ]. Available from: https://www.scien.cx/2025/02/13/randomresizedcrop-in-pytorch-3/
CHICAGO
" » RandomResizedCrop in PyTorch (3)." Super Kai (Kazuya Ito) | Sciencx - Accessed . https://www.scien.cx/2025/02/13/randomresizedcrop-in-pytorch-3/
IEEE
" » RandomResizedCrop in PyTorch (3)." Super Kai (Kazuya Ito) | Sciencx [Online]. Available: https://www.scien.cx/2025/02/13/randomresizedcrop-in-pytorch-3/. [Accessed: ]
rf:citation
» RandomResizedCrop in PyTorch (3) | Super Kai (Kazuya Ito) | Sciencx | https://www.scien.cx/2025/02/13/randomresizedcrop-in-pytorch-3/ |

Please log in to upload a file.




There are no updates yet.
Click the Upload button above to add an update.

You must be logged in to translate posts. Please log in or register.