This content originally appeared on DEV Community and was authored by Super Kai (Kazuya Ito)
*Memos:
- My post explains OxfordIIITPet().
GaussianBlur() can randomly blur an image as shown below:
*Memos:
- The 1st argument for initialization is
num_output_channels
(Required-Type:int
ortuple
/list
(int
)): *Memos:- It's
[height, width]
. - It must be odd
1 <= x
. - A tuple/list must be the 1D with 1 or 2 elements.
- A single value(
int
ortuple/list
(int
)) means[num_output_channels, num_output_channels]
.
- It's
- The 2nd argument for initialization is
sigma
(Optional-Default:(0.1, 2.0)
-Type:int
ortuple
/list
(int
)): *Memos:- It's
[min, max]
so it must bemin <= max
. - It must be
0 < x
. - A tuple/list must be the 1D with 1 or 2 elements.
- A single value(
int
ortuple/list
(int
)) means[sigma, sigma]
.
- It's
- The 1st argument is
img
(Required-Type:PIL Image
ortensor
(int
)): *Memos:- A tensor must be 2D or 3D.
- Don't use
img=
.
-
v2
is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import GaussianBlur
gaussianblur = GaussianBlur(kernel_size=1)
gaussianblur = GaussianBlur(kernel_size=1, sigma=(0.1, 2.0))
gaussianblur
# GaussianBlur(kernel_size=(1, 1), sigma=[0.1, 2.0])
gaussianblur.kernel_size
# (1, 1)
gaussianblur.sigma
# [0.1, 2.0]
origin_data = OxfordIIITPet(
root="data",
transform=None
)
ks1_data = OxfordIIITPet( # `ks` is kernel_size.
root="data",
transform=GaussianBlur(kernel_size=1)
# transform=GaussianBlur(kernel_size=[1])
# transform=GaussianBlur(kernel_size=[1, 1])
)
ks5_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=5)
)
ks11_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=11)
)
ks51_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=51)
)
ks101_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=101)
)
ks5_51_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=[5, 51])
)
ks51_5_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=[51, 5])
)
ks1s01_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=1, sigma=0.1)
)
ks5s01_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=5, sigma=0.1)
)
ks11s01_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=11, sigma=0.1)
)
ks51s01_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=51, sigma=0.1)
)
ks101s01_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=101, sigma=0.1)
)
ks9_51s01_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=[9, 51], sigma=0.1)
)
ks51_9s01_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=[51, 9], sigma=0.1)
)
ks1s100_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=1, sigma=100)
)
ks5s100_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=5, sigma=100)
)
ks11s100_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=11, sigma=100)
)
ks51s100_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=51, sigma=100)
)
ks101s100_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=101, sigma=100)
)
ks9_51s100_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=[9, 51], sigma=100)
)
ks51_9s100_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=[51, 9], sigma=100)
)
import matplotlib.pyplot as plt
def show_images1(data, main_title=None):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images1(data=origin_data, main_title="origin_data")
show_images1(data=ks1_data, main_title="ks1_data")
show_images1(data=ks5_data, main_title="ks5_data")
show_images1(data=ks11_data, main_title="ks11_data")
show_images1(data=ks51_data, main_title="ks51_data")
show_images1(data=ks101_data, main_title="ks101_data")
show_images1(data=ks5_51_data, main_title="ks5_51_data")
show_images1(data=ks51_5_data, main_title="ks51_5_data")
print()
show_images1(data=origin_data, main_title="origin_data")
show_images1(data=ks1s01_data, main_title="ks1s01_data")
show_images1(data=ks5s01_data, main_title="ks5s01_data")
show_images1(data=ks11s01_data, main_title="ks11s01_data")
show_images1(data=ks51s01_data, main_title="ks51s01_data")
show_images1(data=ks101s01_data, main_title="ks101s01_data")
show_images1(data=ks9_51s01_data, main_title="ks9_51s01_data")
show_images1(data=ks51_9s01_data, main_title="ks51_9s01_data")
print()
show_images1(data=origin_data, main_title="origin_data")
show_images1(data=ks1s01_data, main_title="ks1s100_data")
show_images1(data=ks5s01_data, main_title="ks5s100_data")
show_images1(data=ks11s01_data, main_title="ks11s100_data")
show_images1(data=ks51s01_data, main_title="ks51s100_data")
show_images1(data=ks101s01_data, main_title="ks101s100_data")
show_images1(data=ks9_51s01_data, main_title="ks9_51s100_data")
show_images1(data=ks51_9s01_data, main_title="ks51_9s100_data")
# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, ks=None, s=(0.1, 2.0)):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
if ks:
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
gb = GaussianBlur(kernel_size=ks, sigma=s)
plt.imshow(X=gb(im))
plt.xticks(ticks=[])
plt.yticks(ticks=[])
else:
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images2(data=origin_data, main_title="origin_data")
show_images2(data=origin_data, main_title="ks1_data", ks=1)
show_images2(data=origin_data, main_title="ks5_data", ks=5)
show_images2(data=origin_data, main_title="ks11_data", ks=11)
show_images2(data=origin_data, main_title="ks51_data", ks=51)
show_images2(data=origin_data, main_title="ks101_data", ks=101)
show_images2(data=origin_data, main_title="ks5_51data", ks=[5, 51])
show_images2(data=origin_data, main_title="ks51_5_data", ks=[51, 5])
print()
show_images2(data=origin_data, main_title="origin_data")
show_images2(data=origin_data, main_title="ks1s01_data", ks=1, s=0.1)
show_images2(data=origin_data, main_title="ks5s01_data", ks=5, s=0.1)
show_images2(data=origin_data, main_title="ks11s01_data", ks=11, s=0.1)
show_images2(data=origin_data, main_title="ks51s01_data", ks=51, s=0.1)
show_images2(data=origin_data, main_title="ks101s01_data", ks=101, s=0.1)
show_images2(data=origin_data, main_title="ks5_51s01data", ks=[5, 51])
show_images2(data=origin_data, main_title="ks51_5s01_data", ks=[51, 5])
print()
show_images2(data=origin_data, main_title="origin_data")
show_images2(data=origin_data, main_title="ks1s100_data", ks=1, s=100)
show_images2(data=origin_data, main_title="ks5s100_data", ks=5, s=100)
show_images2(data=origin_data, main_title="ks11s100_data", ks=11, s=100)
show_images2(data=origin_data, main_title="ks51s100_data", ks=51, s=100)
show_images2(data=origin_data, main_title="ks101s100_data", ks=101, s=100)
show_images2(data=origin_data, main_title="ks5_51s100data", ks=[5, 51],
s=100)
show_images2(data=origin_data, main_title="ks51_5s100_data", ks=[51, 5],
s=100)
This content originally appeared on DEV Community and was authored by Super Kai (Kazuya Ito)
Print
Share
Comment
Cite
Upload
Translate
Updates
There are no updates yet.
Click the Upload button above to add an update.

APA
MLA
Super Kai (Kazuya Ito) | Sciencx (2025-02-15T22:38:22+00:00) GaussianBlur in PyTorch (1). Retrieved from https://www.scien.cx/2025/02/15/gaussianblur-in-pytorch-1/
" » GaussianBlur in PyTorch (1)." Super Kai (Kazuya Ito) | Sciencx - Saturday February 15, 2025, https://www.scien.cx/2025/02/15/gaussianblur-in-pytorch-1/
HARVARDSuper Kai (Kazuya Ito) | Sciencx Saturday February 15, 2025 » GaussianBlur in PyTorch (1)., viewed ,<https://www.scien.cx/2025/02/15/gaussianblur-in-pytorch-1/>
VANCOUVERSuper Kai (Kazuya Ito) | Sciencx - » GaussianBlur in PyTorch (1). [Internet]. [Accessed ]. Available from: https://www.scien.cx/2025/02/15/gaussianblur-in-pytorch-1/
CHICAGO" » GaussianBlur in PyTorch (1)." Super Kai (Kazuya Ito) | Sciencx - Accessed . https://www.scien.cx/2025/02/15/gaussianblur-in-pytorch-1/
IEEE" » GaussianBlur in PyTorch (1)." Super Kai (Kazuya Ito) | Sciencx [Online]. Available: https://www.scien.cx/2025/02/15/gaussianblur-in-pytorch-1/. [Accessed: ]
rf:citation » GaussianBlur in PyTorch (1) | Super Kai (Kazuya Ito) | Sciencx | https://www.scien.cx/2025/02/15/gaussianblur-in-pytorch-1/ |
Please log in to upload a file.
There are no updates yet.
Click the Upload button above to add an update.