GaussianBlur in PyTorch (1)

Buy Me a Coffee☕

*Memos:

My post explains OxfordIIITPet().

GaussianBlur() can randomly blur an image as shown below:

*Memos:

The 1st argument for initialization is num_output_channels(Required-Type:int or tuple/list(int)):
*Memos:

It’s [heig…


This content originally appeared on DEV Community and was authored by Super Kai (Kazuya Ito)

Buy Me a Coffee

*Memos:

GaussianBlur() can randomly blur an image as shown below:

*Memos:

  • The 1st argument for initialization is num_output_channels(Required-Type:int or tuple/list(int)): *Memos:
    • It's [height, width].
    • It must be odd 1 <= x.
    • A tuple/list must be the 1D with 1 or 2 elements.
    • A single value(int or tuple/list(int)) means [num_output_channels, num_output_channels].
  • The 2nd argument for initialization is sigma(Optional-Default:(0.1, 2.0)-Type:int or tuple/list(int)): *Memos:
    • It's [min, max] so it must be min <= max.
    • It must be 0 < x.
    • A tuple/list must be the 1D with 1 or 2 elements.
    • A single value(int or tuple/list(int)) means [sigma, sigma].
  • The 1st argument is img(Required-Type:PIL Image or tensor(int)): *Memos:
    • A tensor must be 2D or 3D.
    • Don't use img=.
  • v2 is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import GaussianBlur

gaussianblur = GaussianBlur(kernel_size=1)
gaussianblur = GaussianBlur(kernel_size=1, sigma=(0.1, 2.0))

gaussianblur
# GaussianBlur(kernel_size=(1, 1), sigma=[0.1, 2.0])

gaussianblur.kernel_size 
# (1, 1)

gaussianblur.sigma
# [0.1, 2.0]

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

ks1_data = OxfordIIITPet( # `ks` is kernel_size.
    root="data",
    transform=GaussianBlur(kernel_size=1)
    # transform=GaussianBlur(kernel_size=[1])
    # transform=GaussianBlur(kernel_size=[1, 1])
)

ks5_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=5)
)

ks11_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=11)
)

ks51_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=51)
)

ks101_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=101)
)

ks5_51_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=[5, 51])
)

ks51_5_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=[51, 5])
)

ks1s01_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=1, sigma=0.1)
)

ks5s01_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=5, sigma=0.1)
)

ks11s01_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=11, sigma=0.1)
)

ks51s01_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=51, sigma=0.1)
)

ks101s01_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=101, sigma=0.1)
)

ks9_51s01_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=[9, 51], sigma=0.1)
)

ks51_9s01_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=[51, 9], sigma=0.1)
)

ks1s100_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=1, sigma=100)
)

ks5s100_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=5, sigma=100)
)

ks11s100_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=11, sigma=100)
)

ks51s100_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=51, sigma=100)
)

ks101s100_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=101, sigma=100)
)

ks9_51s100_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=[9, 51], sigma=100)
)

ks51_9s100_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=[51, 9], sigma=100)
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
show_images1(data=ks1_data, main_title="ks1_data")
show_images1(data=ks5_data, main_title="ks5_data")
show_images1(data=ks11_data, main_title="ks11_data")
show_images1(data=ks51_data, main_title="ks51_data")
show_images1(data=ks101_data, main_title="ks101_data")
show_images1(data=ks5_51_data, main_title="ks5_51_data")
show_images1(data=ks51_5_data, main_title="ks51_5_data")
print()
show_images1(data=origin_data, main_title="origin_data")
show_images1(data=ks1s01_data, main_title="ks1s01_data")
show_images1(data=ks5s01_data, main_title="ks5s01_data")
show_images1(data=ks11s01_data, main_title="ks11s01_data")
show_images1(data=ks51s01_data, main_title="ks51s01_data")
show_images1(data=ks101s01_data, main_title="ks101s01_data")
show_images1(data=ks9_51s01_data, main_title="ks9_51s01_data")
show_images1(data=ks51_9s01_data, main_title="ks51_9s01_data")
print()
show_images1(data=origin_data, main_title="origin_data")
show_images1(data=ks1s01_data, main_title="ks1s100_data")
show_images1(data=ks5s01_data, main_title="ks5s100_data")
show_images1(data=ks11s01_data, main_title="ks11s100_data")
show_images1(data=ks51s01_data, main_title="ks51s100_data")
show_images1(data=ks101s01_data, main_title="ks101s100_data")
show_images1(data=ks9_51s01_data, main_title="ks9_51s100_data")
show_images1(data=ks51_9s01_data, main_title="ks51_9s100_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, ks=None, s=(0.1, 2.0)):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    if ks:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            gb = GaussianBlur(kernel_size=ks, sigma=s)
            plt.imshow(X=gb(im))
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    else:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            plt.imshow(X=im)
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
show_images2(data=origin_data, main_title="ks1_data", ks=1)
show_images2(data=origin_data, main_title="ks5_data", ks=5)
show_images2(data=origin_data, main_title="ks11_data", ks=11)
show_images2(data=origin_data, main_title="ks51_data", ks=51)
show_images2(data=origin_data, main_title="ks101_data", ks=101)
show_images2(data=origin_data, main_title="ks5_51data", ks=[5, 51])
show_images2(data=origin_data, main_title="ks51_5_data", ks=[51, 5])
print()
show_images2(data=origin_data, main_title="origin_data")
show_images2(data=origin_data, main_title="ks1s01_data", ks=1, s=0.1)
show_images2(data=origin_data, main_title="ks5s01_data", ks=5, s=0.1)
show_images2(data=origin_data, main_title="ks11s01_data", ks=11, s=0.1)
show_images2(data=origin_data, main_title="ks51s01_data", ks=51, s=0.1)
show_images2(data=origin_data, main_title="ks101s01_data", ks=101, s=0.1)
show_images2(data=origin_data, main_title="ks5_51s01data", ks=[5, 51])
show_images2(data=origin_data, main_title="ks51_5s01_data", ks=[51, 5])
print()
show_images2(data=origin_data, main_title="origin_data")
show_images2(data=origin_data, main_title="ks1s100_data", ks=1, s=100)
show_images2(data=origin_data, main_title="ks5s100_data", ks=5, s=100)
show_images2(data=origin_data, main_title="ks11s100_data", ks=11, s=100)
show_images2(data=origin_data, main_title="ks51s100_data", ks=51, s=100)
show_images2(data=origin_data, main_title="ks101s100_data", ks=101, s=100)
show_images2(data=origin_data, main_title="ks5_51s100data", ks=[5, 51],
             s=100)
show_images2(data=origin_data, main_title="ks51_5s100_data", ks=[51, 5],
             s=100)

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description


This content originally appeared on DEV Community and was authored by Super Kai (Kazuya Ito)


Print Share Comment Cite Upload Translate Updates
APA

Super Kai (Kazuya Ito) | Sciencx (2025-02-15T22:38:22+00:00) GaussianBlur in PyTorch (1). Retrieved from https://www.scien.cx/2025/02/15/gaussianblur-in-pytorch-1/

MLA
" » GaussianBlur in PyTorch (1)." Super Kai (Kazuya Ito) | Sciencx - Saturday February 15, 2025, https://www.scien.cx/2025/02/15/gaussianblur-in-pytorch-1/
HARVARD
Super Kai (Kazuya Ito) | Sciencx Saturday February 15, 2025 » GaussianBlur in PyTorch (1)., viewed ,<https://www.scien.cx/2025/02/15/gaussianblur-in-pytorch-1/>
VANCOUVER
Super Kai (Kazuya Ito) | Sciencx - » GaussianBlur in PyTorch (1). [Internet]. [Accessed ]. Available from: https://www.scien.cx/2025/02/15/gaussianblur-in-pytorch-1/
CHICAGO
" » GaussianBlur in PyTorch (1)." Super Kai (Kazuya Ito) | Sciencx - Accessed . https://www.scien.cx/2025/02/15/gaussianblur-in-pytorch-1/
IEEE
" » GaussianBlur in PyTorch (1)." Super Kai (Kazuya Ito) | Sciencx [Online]. Available: https://www.scien.cx/2025/02/15/gaussianblur-in-pytorch-1/. [Accessed: ]
rf:citation
» GaussianBlur in PyTorch (1) | Super Kai (Kazuya Ito) | Sciencx | https://www.scien.cx/2025/02/15/gaussianblur-in-pytorch-1/ |

Please log in to upload a file.




There are no updates yet.
Click the Upload button above to add an update.

You must be logged in to translate posts. Please log in or register.