This content originally appeared on DEV Community and was authored by Super Kai (Kazuya Ito)
*Memos:
-
My post explains RandomAffine() about
scaleargument. -
My post explains RandomAffine() about
shearargument. - My post explains RandomRotation().
- My post explains RandomPerspective().
- My post explains OxfordIIITPet().
RandomAffine() can do random rotation or random affine transformation for an image as shown below:
*Memos:
- The 1st argument for initialization is
degrees(Required-Type:int,floatortuple/list(intorfloat)): *Memos:- It can do rotation.
- It's the range of the degrees
[min, max]so it must bemin <= max. - A degrees value is randomly taken from the range of
[min, max]. - A tuple/list must be the 1D with 2 elements.
- A single value(
intorfloat) means[-degrees(min), +degrees(max)]. - A single value(
intorfloat) must be0 <= x.
- The 2nd argument for initialization is
translate(Optional-Default:None-Type:tuple/list(intorfloat)): *Memos:- It's
[a, b]. - It must be
0 <= 1. - It must be the 1D with 2 elements.
- The 1st element is for the horizontal shift randomly taken in the range of
-img_width * a < horizontal shift < img_width * a. - The 2nd element is for the vertical shift randomly taken in the range of
-img_height * b < vertical shift < img_height * b.
- It's
- The 3rd argument for initialization is
scale(Optional-Default:None-Type:tuple/list(intorfloat)): *Memos:- It's
[min, max]so it must bemin <= max. - It must be
0 < x. - It must be the 1D with 2 elements.
- A scale value is randomly taken from the range of
[min, max].
- It's
- The 4th argument for initialization is
shear(Optional-Default:None-Type:int,floatortuple/list(intorfloat)): *Memos:- It can do affine transformation with
xandy. - It's
[min, max, min, max]so it must bemin <= max. *Memos: - The 1st two elements are the range of
x. - The 2nd two elements are the range of
y. -
xvalue is randomly taken from the range of the 1st two elements. -
yvalue is randomly taken from the range of the 2nd two elements. - A tuple/list must be the 1D with 2 or 4 elements.
- The tuple/list of 2 elements means
[shear[0](min), shear[1](max), 0.0(min), 0.0(max)]. - A single value means
[-shear(min), +shear(max), 0.0(min), 0.0(max)]. - A single value must be
0 <= x.
- It can do affine transformation with
- The 5th argument for initialization is
interpolation(Optional-Default:InterpolationMode.NEAREST-Type:InterpolationMode). - The 6th argument for initialization is
fill(Optional-Default:0-Type:int,floatortuple/list(intorfloat)): *Memos:- It can change the background of an image. *The background can be seen when doing rotation or affine transformation for an image.
- A tuple/list must be the 1D with 1 or 3 elements.
- The 7th argument for initialization is
center(Optional-Default:None-Type:tuple/list(intorfloat)): *Memos:- It can change the center position of an image.
- It must be the 1D with 2 elements.
- The 1st argument is
img(Required-Type:PIL Imageortensor(int)): *Memos:- A tensor must be 3D.
- Don't use
img=.
-
v2is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandomAffine
from torchvision.transforms.functional import InterpolationMode
ra = RandomAffine(degrees=90)
ra = RandomAffine(degrees=[-90, 90],
translate=None,
scale=None,
shear=None,
interpolation=InterpolationMode.NEAREST,
fill=0,
center=None)
ra
# RandomAffine(degrees=[-90, 90],
# interpolation=InterpolationMode.NEAREST,
# fill=0)
ra.degrees
# [-90.0, 90.0]
print(ra.translate)
# None
print(ra.scale)
# None
print(ra.shear)
# None
ra.interpolation
# <InterpolationMode.NEAREST: 'nearest'>
ra.fill
# 0
print(ra.center)
# None
origin_data = OxfordIIITPet(
root="data",
transform=None
)
d0origin_data = OxfordIIITPet( # `d` is degrees.
root="data",
transform=RandomAffine(degrees=0)
# transform=RandomAffine(degrees=[0, 0])
)
d180_data = OxfordIIITPet(
root="data",
transform=RandomAffine(degrees=180)
# transform=RandomAffine(degrees=[-180, 180])
# transform=RandomAffine(degrees=[-360, 0])
# transform=RandomAffine(degrees=[0, 360])
)
dn180_0_data = OxfordIIITPet( # `n` is negative.
root="data",
transform=RandomAffine(degrees=[-180, 0])
# transform=RandomAffine(degrees=[180, 360])
)
d0_180_data = OxfordIIITPet(
root="data",
transform=RandomAffine(degrees=[0, 180])
# transform=RandomAffine(degrees=[-360, -180])
)
d15_15_data = OxfordIIITPet(
root="data",
transform=RandomAffine(degrees=[15, 15])
# transform=RandomAffine(degrees=[-345, -345])
)
d30_30_data = OxfordIIITPet(
root="data",
transform=RandomAffine(degrees=[30, 30])
# transform=RandomAffine(degrees=[-330, -330])
)
d45_45_data = OxfordIIITPet(
root="data",
transform=RandomAffine(degrees=[45, 45])
# transform=RandomAffine(degrees=[-315, -315])
)
d60_60_data = OxfordIIITPet(
root="data",
transform=RandomAffine(degrees=[60, 60])
# transform=RandomAffine(degrees=[-300, -300])
)
d75_75_data = OxfordIIITPet(
root="data",
transform=RandomAffine(degrees=[75, 75])
# transform=RandomAffine(degrees=[-285, -285])
)
d90_90_data = OxfordIIITPet(
root="data",
transform=RandomAffine(degrees=[90, 90])
# transform=RandomAffine(degrees=[-270, -270])
)
d105_105_data = OxfordIIITPet(
root="data",
transform=RandomAffine(degrees=[105, 105])
# transform=RandomAffine(degrees=[-255, -255])
)
d120_120_data = OxfordIIITPet(
root="data",
transform=RandomAffine(degrees=[120, 120])
# transform=RandomAffine(degrees=[-240, -240])
)
d135_135_data = OxfordIIITPet(
root="data",
transform=RandomAffine(degrees=[135, 135])
# transform=RandomAffine(degrees=[-225, -225])
)
d150_150_data = OxfordIIITPet(
root="data",
transform=RandomAffine(degrees=[150, 150])
# transform=RandomAffine(degrees=[-210, -210])
)
d165_165_data = OxfordIIITPet(
root="data",
transform=RandomAffine(degrees=[165, 165])
# transform=RandomAffine(degrees=[-195, -195])
)
d180_180_data = OxfordIIITPet(
root="data",
transform=RandomAffine(degrees=[180, 180])
# transform=RandomAffine(degrees=[-180, -180])
)
dn15n15_data = OxfordIIITPet(
root="data",
transform=RandomAffine(degrees=[-15, -15])
# transform=RandomAffine(degrees=[345, 345])
)
dn30n30_data = OxfordIIITPet(
root="data",
transform=RandomAffine(degrees=[-30, -30])
# transform=RandomAffine(degrees=[330, 330])
)
dn45n45_data = OxfordIIITPet(
root="data",
transform=RandomAffine(degrees=[-45, -45])
# transform=RandomAffine(degrees=[315, 315])
)
dn60n60_data = OxfordIIITPet(
root="data",
transform=RandomAffine(degrees=[-60, -60])
# transform=RandomAffine(degrees=[300, 300])
)
dn75n75_data = OxfordIIITPet(
root="data",
transform=RandomAffine(degrees=[-75, -75])
# transform=RandomAffine(degrees=[285, 285])
)
dn90n90_data = OxfordIIITPet(
root="data",
transform=RandomAffine(degrees=[-90, -90])
# transform=RandomAffine(degrees=[270, 270])
)
dn105n105_data = OxfordIIITPet(
root="data",
transform=RandomAffine(degrees=[-105, -105])
# transform=RandomAffine(degrees=[255, 255])
)
dn120n120_data = OxfordIIITPet(
root="data",
transform=RandomAffine(degrees=[-120, -120])
# transform=RandomAffine(degrees=[240, 240])
)
dn135n135_data = OxfordIIITPet(
root="data",
transform=RandomAffine(degrees=[-135, -135])
# transform=RandomAffine(degrees=[225, 225])
)
dn150n150_data = OxfordIIITPet(
root="data",
transform=RandomAffine(degrees=[-150, -150])
# transform=RandomAffine(degrees=[210, 210])
)
dn165n165_data = OxfordIIITPet(
root="data",
transform=RandomAffine(degrees=[-165, -165])
# transform=RandomAffine(degrees=[195, 195])
)
dn180n180_data = OxfordIIITPet(
root="data",
transform=RandomAffine(degrees=[-180, -180])
# transform=RandomAffine(degrees=[180, 180])
)
hrvrtran_data = OxfordIIITPet( # `hr` is horizontal and `vr` is vertical.
root="data", # `tran` is translate.
transform=RandomAffine(degrees=[0, 0], translate=[0.8, 0.5])
)
hrtran_data = OxfordIIITPet(
root="data",
transform=RandomAffine(degrees=[0, 0], translate=[0.8, 0])
)
vrtran_data = OxfordIIITPet(
root="data",
transform=RandomAffine(degrees=[0, 0], translate=[0, 0.5])
)
dn45n45fgray_data = OxfordIIITPet(
root="data",
transform=RandomAffine(degrees=[-45, -45], fill=150)
)
d135_135fpurple_data = OxfordIIITPet(
root="data",
transform=RandomAffine(degrees=[135, 135], fill=[160, 32, 240])
)
d180_180c270_200_data = OxfordIIITPet( # `c` is center.
root="data",
transform=RandomAffine(degrees=[180, 180], center=[270, 200])
)
import matplotlib.pyplot as plt
def show_images1(data, main_title=None):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=d0origin_data, main_title="d0origin_data")
show_images1(data=d180_data, main_title="d180_data")
show_images1(data=dn180_0_data, main_title="dn180_0_data")
show_images1(data=d0_180_data, main_title="d0_180_data")
print()
show_images1(data=d0origin_data, main_title="d0origin_data")
show_images1(data=d15_15_data, main_title="d15_15_data")
show_images1(data=d30_30_data, main_title="d30_30_data")
show_images1(data=d45_45_data, main_title="d45_45_data")
show_images1(data=d60_60_data, main_title="d60_60_data")
show_images1(data=d75_75_data, main_title="d75_75_data")
show_images1(data=d90_90_data, main_title="d90_90_data")
show_images1(data=d105_105_data, main_title="d105_105_data")
show_images1(data=d120_120_data, main_title="d120_120_data")
show_images1(data=d135_135_data, main_title="d135_135_data")
show_images1(data=d150_150_data, main_title="d150_150_data")
show_images1(data=d165_165_data, main_title="d165_165_data")
show_images1(data=d180_180_data, main_title="d180_180_data")
print()
show_images1(data=d0origin_data, main_title="d0origin_data")
show_images1(data=dn15n15_data, main_title="dn15n15_data")
show_images1(data=dn30n30_data, main_title="dn30n30_data")
show_images1(data=dn45n45_data, main_title="dn45n45_data")
show_images1(data=dn60n60_data, main_title="dn60n60_data")
show_images1(data=dn75n75_data, main_title="dn75n75_data")
show_images1(data=dn90n90_data, main_title="dn90n90_data")
show_images1(data=dn105n105_data, main_title="dn105n105_data")
show_images1(data=dn120n120_data, main_title="dn120n120_data")
show_images1(data=dn135n135_data, main_title="dn135n135_data")
show_images1(data=dn150n150_data, main_title="dn150n150_data")
show_images1(data=dn165n165_data, main_title="dn165n165_data")
show_images1(data=dn180n180_data, main_title="dn180n180_data")
print()
show_images1(data=hrvrtran_data, main_title="hrvrtran_data")
show_images1(data=hrtran_data, main_title="hrtran_data")
show_images1(data=vrtran_data, main_title="vrtran_data")
print()
show_images1(data=dn45n45fgray_data, main_title="dn45n45fgray_data")
show_images1(data=d135_135fpurple_data, main_title="d135_135fpurple_data")
show_images1(data=d180_180c270_200_data, main_title="d180_180c270_200_data")
# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, d=0, t=None, sc=None, sh=None,
ip=InterpolationMode.NEAREST, f=0, c=None):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
ra = RandomAffine(degrees=d, translate=t, scale=sc,
shear=sh, interpolation=ip, center=c, fill=f)
plt.imshow(X=ra(im))
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="d0origin_data", d=0)
show_images2(data=origin_data, main_title="d180_data", d=180)
show_images2(data=origin_data, main_title="dn180_0_data", d=[-180, 0])
show_images2(data=origin_data, main_title="d0_180_data", d=[0, 180])
print()
show_images2(data=origin_data, main_title="d0origin_data", d=0)
show_images2(data=origin_data, main_title="d15_15_data", d=[15, 15])
show_images2(data=origin_data, main_title="d30_30_data", d=[30, 30])
show_images2(data=origin_data, main_title="d45_45_data", d=[45, 45])
show_images2(data=origin_data, main_title="d60_60_data", d=[60, 60])
show_images2(data=origin_data, main_title="d75_75_data", d=[75, 75])
show_images2(data=origin_data, main_title="d90_90_data", d=[90, 90])
show_images2(data=origin_data, main_title="d105_105_data", d=[105, 105])
show_images2(data=origin_data, main_title="d120_120_data", d=[120, 120])
show_images2(data=origin_data, main_title="d135_135_data", d=[135, 135])
show_images2(data=origin_data, main_title="d150_150_data", d=[150, 150])
show_images2(data=origin_data, main_title="d165_165_data", d=[165, 165])
show_images2(data=origin_data, main_title="d180_180_data", d=[180, 180])
print()
show_images2(data=origin_data, main_title="d0origin_data", d=0)
show_images2(data=origin_data, main_title="dn15n15_data", d=[-15, -15])
show_images2(data=origin_data, main_title="dn30n30_data", d=[-30, -30])
show_images2(data=origin_data, main_title="dn45n45_data", d=[-45, -45])
show_images2(data=origin_data, main_title="dn60n60_data", d=[-60, -60])
show_images2(data=origin_data, main_title="dn75n75_data", d=[-75, -75])
show_images2(data=origin_data, main_title="dn90n90_data", d=[-90, -90])
show_images2(data=origin_data, main_title="dn105n105_data",
d=[-105, -105])
show_images2(data=origin_data, main_title="dn120n120_data",
d=[-120, -120])
show_images2(data=origin_data, main_title="dn135n135_data",
d=[-135, -135])
show_images2(data=origin_data, main_title="dn150n150_data",
d=[-150, -150])
show_images2(data=origin_data, main_title="dn165n165_data",
d=[-165, -165])
show_images2(data=origin_data, main_title="dn180n180_data",
d=[-180, -180])
print()
show_images2(data=origin_data, main_title="hrvrtran_data", d=[0, 0],
t=[0.8, 0.5])
show_images2(data=origin_data, main_title="hrtran_data", d=[0, 0],
t=[0.8, 0])
show_images2(data=origin_data, main_title="vrtran_data", d=[0, 0],
t=[0, 0.5])
print()
show_images2(data=origin_data, main_title="dn45n45fgray_data",
d=[-45, -45], f=150)
show_images2(data=origin_data, main_title="d135_135fpurple_data",
d=[135, 135], f=[160, 32, 240])
show_images2(data=origin_data, main_title="d180_180c270_200_data",
d=[180, 180], c=[270, 200])
This content originally appeared on DEV Community and was authored by Super Kai (Kazuya Ito)
Print
Share
Comment
Cite
Upload
Translate
Updates
There are no updates yet.
Click the Upload button above to add an update.
APA
MLA
Super Kai (Kazuya Ito) | Sciencx (2025-02-21T22:03:16+00:00) RandomAffine in PyTorch (1). Retrieved from https://www.scien.cx/2025/02/21/randomaffine-in-pytorch-1-2/
" » RandomAffine in PyTorch (1)." Super Kai (Kazuya Ito) | Sciencx - Friday February 21, 2025, https://www.scien.cx/2025/02/21/randomaffine-in-pytorch-1-2/
HARVARDSuper Kai (Kazuya Ito) | Sciencx Friday February 21, 2025 » RandomAffine in PyTorch (1)., viewed ,<https://www.scien.cx/2025/02/21/randomaffine-in-pytorch-1-2/>
VANCOUVERSuper Kai (Kazuya Ito) | Sciencx - » RandomAffine in PyTorch (1). [Internet]. [Accessed ]. Available from: https://www.scien.cx/2025/02/21/randomaffine-in-pytorch-1-2/
CHICAGO" » RandomAffine in PyTorch (1)." Super Kai (Kazuya Ito) | Sciencx - Accessed . https://www.scien.cx/2025/02/21/randomaffine-in-pytorch-1-2/
IEEE" » RandomAffine in PyTorch (1)." Super Kai (Kazuya Ito) | Sciencx [Online]. Available: https://www.scien.cx/2025/02/21/randomaffine-in-pytorch-1-2/. [Accessed: ]
rf:citation » RandomAffine in PyTorch (1) | Super Kai (Kazuya Ito) | Sciencx | https://www.scien.cx/2025/02/21/randomaffine-in-pytorch-1-2/ |
Please log in to upload a file.
There are no updates yet.
Click the Upload button above to add an update.


































