RandomAffine in PyTorch (1)

Buy Me a Coffee☕

*Memos:

My post explains RandomAffine() about scale argument.

My post explains RandomAffine() about shear argument.

My post explains RandomRotation().

My post explains RandomPerspective().

My post explains OxfordIIITPet().

Ra…


This content originally appeared on DEV Community and was authored by Super Kai (Kazuya Ito)

Buy Me a Coffee

*Memos:

RandomAffine() can do random rotation or random affine transformation for an image as shown below:

*Memos:

  • The 1st argument for initialization is degrees(Required-Type:int, float or tuple/list(int or float)): *Memos:
    • It can do rotation.
    • It's the range of the degrees [min, max] so it must be min <= max.
    • A degrees value is randomly taken from the range of [min, max].
    • A tuple/list must be the 1D with 2 elements.
    • A single value(int or float) means [-degrees(min), +degrees(max)].
    • A single value(int or float) must be 0 <= x.
  • The 2nd argument for initialization is translate(Optional-Default:None-Type:tuple/list(int or float)): *Memos:
    • It's [a, b].
    • It must be 0 <= 1.
    • It must be the 1D with 2 elements.
    • The 1st element is for the horizontal shift randomly taken in the range of -img_width * a < horizontal shift < img_width * a.
    • The 2nd element is for the vertical shift randomly taken in the range of -img_height * b < vertical shift < img_height * b.
  • The 3rd argument for initialization is scale(Optional-Default:None-Type:tuple/list(int or float)): *Memos:
    • It's [min, max] so it must be min <= max.
    • It must be 0 < x.
    • It must be the 1D with 2 elements.
    • A scale value is randomly taken from the range of [min, max].
  • The 4th argument for initialization is shear(Optional-Default:None-Type:int, float or tuple/list(int or float)): *Memos:
    • It can do affine transformation with x and y.
    • It's [min, max, min, max] so it must be min <= max. *Memos:
    • The 1st two elements are the range of x.
    • The 2nd two elements are the range of y.
    • x value is randomly taken from the range of the 1st two elements.
    • y value is randomly taken from the range of the 2nd two elements.
    • A tuple/list must be the 1D with 2 or 4 elements.
    • The tuple/list of 2 elements means [shear[0](min), shear[1](max), 0.0(min), 0.0(max)].
    • A single value means [-shear(min), +shear(max), 0.0(min), 0.0(max)].
    • A single value must be 0 <= x.
  • The 5th argument for initialization is interpolation(Optional-Default:InterpolationMode.NEAREST-Type:InterpolationMode).
  • The 6th argument for initialization is fill(Optional-Default:0-Type:int, float or tuple/list(int or float)): *Memos:
    • It can change the background of an image. *The background can be seen when doing rotation or affine transformation for an image.
    • A tuple/list must be the 1D with 1 or 3 elements.
  • The 7th argument for initialization is center(Optional-Default:None-Type:tuple/list(int or float)): *Memos:
    • It can change the center position of an image.
    • It must be the 1D with 2 elements.
  • The 1st argument is img(Required-Type:PIL Image or tensor(int)): *Memos:
    • A tensor must be 3D.
    • Don't use img=.
  • v2 is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandomAffine
from torchvision.transforms.functional import InterpolationMode

ra = RandomAffine(degrees=90)
ra = RandomAffine(degrees=[-90, 90],
                  translate=None,
                  scale=None,
                  shear=None,
                  interpolation=InterpolationMode.NEAREST,
                  fill=0,
                  center=None)
ra
# RandomAffine(degrees=[-90, 90],
#              interpolation=InterpolationMode.NEAREST,
#              fill=0)

ra.degrees
# [-90.0, 90.0]

print(ra.translate)
# None

print(ra.scale)
# None

print(ra.shear)
# None

ra.interpolation
# <InterpolationMode.NEAREST: 'nearest'>

ra.fill
# 0

print(ra.center)
# None

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

d0origin_data = OxfordIIITPet( # `d` is degrees.
    root="data",
    transform=RandomAffine(degrees=0)
    # transform=RandomAffine(degrees=[0, 0])
)

d180_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=180)
    # transform=RandomAffine(degrees=[-180, 180])
    # transform=RandomAffine(degrees=[-360, 0])
    # transform=RandomAffine(degrees=[0, 360])
)

dn180_0_data = OxfordIIITPet( # `n` is negative.
    root="data",
    transform=RandomAffine(degrees=[-180, 0])
    # transform=RandomAffine(degrees=[180, 360])
)

d0_180_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 180])
    # transform=RandomAffine(degrees=[-360, -180])
)

d15_15_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[15, 15])
    # transform=RandomAffine(degrees=[-345, -345])
)

d30_30_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[30, 30])
    # transform=RandomAffine(degrees=[-330, -330])
)

d45_45_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[45, 45])
    # transform=RandomAffine(degrees=[-315, -315])
)

d60_60_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[60, 60])
    # transform=RandomAffine(degrees=[-300, -300])
)

d75_75_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[75, 75])
    # transform=RandomAffine(degrees=[-285, -285])
)

d90_90_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[90, 90])
    # transform=RandomAffine(degrees=[-270, -270])
)

d105_105_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[105, 105])
    # transform=RandomAffine(degrees=[-255, -255])
)

d120_120_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[120, 120])
    # transform=RandomAffine(degrees=[-240, -240])
)

d135_135_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[135, 135])
    # transform=RandomAffine(degrees=[-225, -225])
)

d150_150_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[150, 150])
    # transform=RandomAffine(degrees=[-210, -210])
)

d165_165_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[165, 165])
    # transform=RandomAffine(degrees=[-195, -195])
)

d180_180_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[180, 180])
    # transform=RandomAffine(degrees=[-180, -180])
)

dn15n15_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[-15, -15])
    # transform=RandomAffine(degrees=[345, 345])
)

dn30n30_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[-30, -30])
    # transform=RandomAffine(degrees=[330, 330])
)

dn45n45_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[-45, -45])
    # transform=RandomAffine(degrees=[315, 315])
)

dn60n60_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[-60, -60])
    # transform=RandomAffine(degrees=[300, 300])
)

dn75n75_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[-75, -75])
    # transform=RandomAffine(degrees=[285, 285])
)

dn90n90_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[-90, -90])
    # transform=RandomAffine(degrees=[270, 270])
)

dn105n105_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[-105, -105])
    # transform=RandomAffine(degrees=[255, 255])
)

dn120n120_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[-120, -120])
    # transform=RandomAffine(degrees=[240, 240])
)

dn135n135_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[-135, -135])
    # transform=RandomAffine(degrees=[225, 225])
)

dn150n150_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[-150, -150])
    # transform=RandomAffine(degrees=[210, 210])
)

dn165n165_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[-165, -165])
    # transform=RandomAffine(degrees=[195, 195])
)

dn180n180_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[-180, -180])
    # transform=RandomAffine(degrees=[180, 180])
)

hrvrtran_data = OxfordIIITPet( # `hr` is horizontal and `vr` is vertical.
    root="data",               # `tran` is translate.
    transform=RandomAffine(degrees=[0, 0], translate=[0.8, 0.5])
)

hrtran_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], translate=[0.8, 0])
)

vrtran_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], translate=[0, 0.5])
)

dn45n45fgray_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[-45, -45], fill=150)
)

d135_135fpurple_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[135, 135], fill=[160, 32, 240])
)

d180_180c270_200_data = OxfordIIITPet( # `c` is center.
    root="data",
    transform=RandomAffine(degrees=[180, 180], center=[270, 200])
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=d0origin_data, main_title="d0origin_data")
show_images1(data=d180_data, main_title="d180_data")
show_images1(data=dn180_0_data, main_title="dn180_0_data")
show_images1(data=d0_180_data, main_title="d0_180_data")
print()
show_images1(data=d0origin_data, main_title="d0origin_data")
show_images1(data=d15_15_data, main_title="d15_15_data")
show_images1(data=d30_30_data, main_title="d30_30_data")
show_images1(data=d45_45_data, main_title="d45_45_data")
show_images1(data=d60_60_data, main_title="d60_60_data")
show_images1(data=d75_75_data, main_title="d75_75_data")
show_images1(data=d90_90_data, main_title="d90_90_data")
show_images1(data=d105_105_data, main_title="d105_105_data")
show_images1(data=d120_120_data, main_title="d120_120_data")
show_images1(data=d135_135_data, main_title="d135_135_data")
show_images1(data=d150_150_data, main_title="d150_150_data")
show_images1(data=d165_165_data, main_title="d165_165_data")
show_images1(data=d180_180_data, main_title="d180_180_data")
print()
show_images1(data=d0origin_data, main_title="d0origin_data")
show_images1(data=dn15n15_data, main_title="dn15n15_data")
show_images1(data=dn30n30_data, main_title="dn30n30_data")
show_images1(data=dn45n45_data, main_title="dn45n45_data")
show_images1(data=dn60n60_data, main_title="dn60n60_data")
show_images1(data=dn75n75_data, main_title="dn75n75_data")
show_images1(data=dn90n90_data, main_title="dn90n90_data")
show_images1(data=dn105n105_data, main_title="dn105n105_data")
show_images1(data=dn120n120_data, main_title="dn120n120_data")
show_images1(data=dn135n135_data, main_title="dn135n135_data")
show_images1(data=dn150n150_data, main_title="dn150n150_data")
show_images1(data=dn165n165_data, main_title="dn165n165_data")
show_images1(data=dn180n180_data, main_title="dn180n180_data")
print()
show_images1(data=hrvrtran_data, main_title="hrvrtran_data")
show_images1(data=hrtran_data, main_title="hrtran_data")
show_images1(data=vrtran_data, main_title="vrtran_data")
print()
show_images1(data=dn45n45fgray_data, main_title="dn45n45fgray_data")
show_images1(data=d135_135fpurple_data, main_title="d135_135fpurple_data")
show_images1(data=d180_180c270_200_data, main_title="d180_180c270_200_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ 
def show_images2(data, main_title=None, d=0, t=None, sc=None, sh=None,
                 ip=InterpolationMode.NEAREST, f=0, c=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        ra = RandomAffine(degrees=d, translate=t, scale=sc,
                          shear=sh, interpolation=ip, center=c, fill=f)
        plt.imshow(X=ra(im))
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="d0origin_data", d=0)
show_images2(data=origin_data, main_title="d180_data", d=180)
show_images2(data=origin_data, main_title="dn180_0_data", d=[-180, 0])
show_images2(data=origin_data, main_title="d0_180_data", d=[0, 180])
print()
show_images2(data=origin_data, main_title="d0origin_data", d=0)
show_images2(data=origin_data, main_title="d15_15_data", d=[15, 15])
show_images2(data=origin_data, main_title="d30_30_data", d=[30, 30])
show_images2(data=origin_data, main_title="d45_45_data", d=[45, 45])
show_images2(data=origin_data, main_title="d60_60_data", d=[60, 60])
show_images2(data=origin_data, main_title="d75_75_data", d=[75, 75])
show_images2(data=origin_data, main_title="d90_90_data", d=[90, 90])
show_images2(data=origin_data, main_title="d105_105_data", d=[105, 105])
show_images2(data=origin_data, main_title="d120_120_data", d=[120, 120])
show_images2(data=origin_data, main_title="d135_135_data", d=[135, 135])
show_images2(data=origin_data, main_title="d150_150_data", d=[150, 150])
show_images2(data=origin_data, main_title="d165_165_data", d=[165, 165])
show_images2(data=origin_data, main_title="d180_180_data", d=[180, 180])
print()
show_images2(data=origin_data, main_title="d0origin_data", d=0)
show_images2(data=origin_data, main_title="dn15n15_data", d=[-15, -15])
show_images2(data=origin_data, main_title="dn30n30_data", d=[-30, -30])
show_images2(data=origin_data, main_title="dn45n45_data", d=[-45, -45])
show_images2(data=origin_data, main_title="dn60n60_data", d=[-60, -60])
show_images2(data=origin_data, main_title="dn75n75_data", d=[-75, -75])
show_images2(data=origin_data, main_title="dn90n90_data", d=[-90, -90])
show_images2(data=origin_data, main_title="dn105n105_data",
             d=[-105, -105])
show_images2(data=origin_data, main_title="dn120n120_data",
             d=[-120, -120])
show_images2(data=origin_data, main_title="dn135n135_data",
             d=[-135, -135])
show_images2(data=origin_data, main_title="dn150n150_data",
             d=[-150, -150])
show_images2(data=origin_data, main_title="dn165n165_data",
             d=[-165, -165])
show_images2(data=origin_data, main_title="dn180n180_data",
             d=[-180, -180])
print()
show_images2(data=origin_data, main_title="hrvrtran_data", d=[0, 0],
             t=[0.8, 0.5])
show_images2(data=origin_data, main_title="hrtran_data", d=[0, 0],
             t=[0.8, 0])
show_images2(data=origin_data, main_title="vrtran_data", d=[0, 0],
             t=[0, 0.5])
print()
show_images2(data=origin_data, main_title="dn45n45fgray_data",
             d=[-45, -45], f=150)
show_images2(data=origin_data, main_title="d135_135fpurple_data",
             d=[135, 135], f=[160, 32, 240])
show_images2(data=origin_data, main_title="d180_180c270_200_data",
             d=[180, 180], c=[270, 200])

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description


This content originally appeared on DEV Community and was authored by Super Kai (Kazuya Ito)


Print Share Comment Cite Upload Translate Updates
APA

Super Kai (Kazuya Ito) | Sciencx (2025-02-21T22:03:16+00:00) RandomAffine in PyTorch (1). Retrieved from https://www.scien.cx/2025/02/21/randomaffine-in-pytorch-1-2/

MLA
" » RandomAffine in PyTorch (1)." Super Kai (Kazuya Ito) | Sciencx - Friday February 21, 2025, https://www.scien.cx/2025/02/21/randomaffine-in-pytorch-1-2/
HARVARD
Super Kai (Kazuya Ito) | Sciencx Friday February 21, 2025 » RandomAffine in PyTorch (1)., viewed ,<https://www.scien.cx/2025/02/21/randomaffine-in-pytorch-1-2/>
VANCOUVER
Super Kai (Kazuya Ito) | Sciencx - » RandomAffine in PyTorch (1). [Internet]. [Accessed ]. Available from: https://www.scien.cx/2025/02/21/randomaffine-in-pytorch-1-2/
CHICAGO
" » RandomAffine in PyTorch (1)." Super Kai (Kazuya Ito) | Sciencx - Accessed . https://www.scien.cx/2025/02/21/randomaffine-in-pytorch-1-2/
IEEE
" » RandomAffine in PyTorch (1)." Super Kai (Kazuya Ito) | Sciencx [Online]. Available: https://www.scien.cx/2025/02/21/randomaffine-in-pytorch-1-2/. [Accessed: ]
rf:citation
» RandomAffine in PyTorch (1) | Super Kai (Kazuya Ito) | Sciencx | https://www.scien.cx/2025/02/21/randomaffine-in-pytorch-1-2/ |

Please log in to upload a file.




There are no updates yet.
Click the Upload button above to add an update.

You must be logged in to translate posts. Please log in or register.