This content originally appeared on DEV Community and was authored by Super Kai (Kazuya Ito)
*Memos:
-
My post explains RandAugment() about
num_ops
andfill
argument. - My post explains AutoAugment().
- My post explains TrivialAugmentWide().
- My post explains OxfordIIITPet().
AugMix() can randomly do AugMix to an image as shown below:
*Memos:
- The 1st argument for initialization is
severity
(Optional-Default:3
-Type:int
). *It must be1 <= x <= 10
. - The 2nd argument for initialization is
mixture_width
(Optional-Default:3
-Type:int
). - The 3rd argument for initialization is
chain_depth
(Optional-Default:-1
-Type:int
). *If it'sx <= 0
, it's randomly taken from the interval[1, 3]
. - The 4th argument for initialization is
alpha
(Optional-Default:1.0
-Type:float
). *It must be1 <= x
. - The 5th argument for initialization is
all_ops
(Optional-Default:True
-Type:bool
). *It must be1 <= x
. - The 6th argument for initialization is
interpolation
(Optional-Default:InterpolationMode.NEAREST
-Type:InterpolationMode). *If the input is a tensor, onlyInterpolationMode.NEAREST
andInterpolationMode.BILINEAR
can be set to it. - The 7th argument for initialization is
fill
(Optional-Default:0
-Type:int
,float
ortuple
/list
(int
orfloat
)): *Memos:- It can change the background of an image. *The background can be seen when doing AugMix to an image.
- A tuple/list must be the 1D with 1 or 3 elements.
- If all values are
x <= 0
, it's black. - If all values are
255 <= x
, it's white.
- The 1st argument is
img
(Required-Type:PIL Image
ortensor
(int
)): *Memos:- A tensor must be 2D or 3D.
- Don't use
img=
.
-
v2
is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import AugMix
from torchvision.transforms.functional import InterpolationMode
am = AugMix()
am = AugMix(severity=3, mixture_width=3, chain_depth=-1, alpha=1.0,
all_ops=True, interpolation=InterpolationMode.BILINEAR,
fill=None)
am
# AugMix(interpolation=InterpolationMode.BILINEAR, severity=3,
# mixture_width=3, chain_depth=-1, alpha=1.0, all_ops=True)
am.severity
# 3
am.mixture_width
# 3
am.chain_depth
# -1
am.alpha
# 1.0
am.all_ops
# True
am.interpolation
# <InterpolationMode.BILINEAR: 'bilinear'>
print(am.fill)
# None
origin_data = OxfordIIITPet(
root="data",
transform=None
)
default_data = OxfordIIITPet(
root="data",
transform=AugMix()
)
aoFalse_data = OxfordIIITPet( # `ao` is all_ops.
root="data",
transform=AugMix(all_ops=False)
# transform=AugMix(severity=3, mixture_width=3, chain_depth=-1,
# alpha=1.0, all_ops=True,
# interpolation=InterpolationMode.BILINEAR,
# fill=None)
)
s10cd25fgray_data = OxfordIIITPet( # `s` is severity and `cd` is chain_depth.
root="data", # `f` is fill.
transform=AugMix(severity=10, chain_depth=25, fill=150)
)
s10cd25fpurple_data = OxfordIIITPet(
root="data",
transform=AugMix(severity=10, chain_depth=25, fill=[160, 32, 240])
)
import matplotlib.pyplot as plt
def show_images1(data, main_title=None):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=default_data, main_title="default_data")
show_images1(data=default_data, main_title="default_data")
show_images1(data=default_data, main_title="default_data")
show_images1(data=default_data, main_title="default_data")
show_images1(data=default_data, main_title="default_data")
show_images1(data=default_data, main_title="default_data")
show_images1(data=default_data, main_title="default_data")
show_images1(data=default_data, main_title="default_data")
show_images1(data=default_data, main_title="default_data")
show_images1(data=default_data, main_title="default_data")
print()
show_images1(data=aoFalse_data, main_title="aoFalse_data")
show_images1(data=aoFalse_data, main_title="aoFalse_data")
show_images1(data=aoFalse_data, main_title="aoFalse_data")
show_images1(data=aoFalse_data, main_title="aoFalse_data")
show_images1(data=aoFalse_data, main_title="aoFalse_data")
show_images1(data=aoFalse_data, main_title="aoFalse_data")
show_images1(data=aoFalse_data, main_title="aoFalse_data")
show_images1(data=aoFalse_data, main_title="aoFalse_data")
show_images1(data=aoFalse_data, main_title="aoFalse_data")
show_images1(data=aoFalse_data, main_title="aoFalse_data")
print()
show_images1(data=s10cd25fgray_data, main_title="s10cd25fgray_data")
show_images1(data=s10cd25fpurple_data, main_title="s10cd25fpurple_data")
# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, s=3, mw=3, cd=-1, a=1.0,
ao=True, ip=InterpolationMode.BILINEAR, f=None):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
if main_title != "origin_data":
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
am = AugMix(severity=s, mixture_width=mw, chain_depth=cd,
alpha=a, all_ops=ao, interpolation=ip, fill=f)
plt.imshow(X=am(im))
plt.xticks(ticks=[])
plt.yticks(ticks=[])
else:
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="default_data")
show_images2(data=origin_data, main_title="default_data")
show_images2(data=origin_data, main_title="default_data")
show_images2(data=origin_data, main_title="default_data")
show_images2(data=origin_data, main_title="default_data")
show_images2(data=origin_data, main_title="default_data")
show_images2(data=origin_data, main_title="default_data")
show_images2(data=origin_data, main_title="default_data")
show_images2(data=origin_data, main_title="default_data")
show_images2(data=origin_data, main_title="default_data")
print()
show_images2(data=origin_data, main_title="aoFalse_data", ao=False)
show_images2(data=origin_data, main_title="aoFalse_data", ao=False)
show_images2(data=origin_data, main_title="aoFalse_data", ao=False)
show_images2(data=origin_data, main_title="aoFalse_data", ao=False)
show_images2(data=origin_data, main_title="aoFalse_data", ao=False)
show_images2(data=origin_data, main_title="aoFalse_data", ao=False)
show_images2(data=origin_data, main_title="aoFalse_data", ao=False)
show_images2(data=origin_data, main_title="aoFalse_data", ao=False)
show_images2(data=origin_data, main_title="aoFalse_data", ao=False)
show_images2(data=origin_data, main_title="aoFalse_data", ao=False)
print()
show_images2(data=origin_data, main_title="s10cd25fgray_data", s=10, cd=25,
f=150)
show_images2(data=origin_data, main_title="s10cd25fpurple_data", s=10,
cd=25, f=[160, 32, 240])
This content originally appeared on DEV Community and was authored by Super Kai (Kazuya Ito)
Print
Share
Comment
Cite
Upload
Translate
Updates
There are no updates yet.
Click the Upload button above to add an update.

APA
MLA
Super Kai (Kazuya Ito) | Sciencx (2025-03-07T23:30:15+00:00) AugMix in PyTorch (1). Retrieved from https://www.scien.cx/2025/03/07/augmix-in-pytorch-1/
" » AugMix in PyTorch (1)." Super Kai (Kazuya Ito) | Sciencx - Friday March 7, 2025, https://www.scien.cx/2025/03/07/augmix-in-pytorch-1/
HARVARDSuper Kai (Kazuya Ito) | Sciencx Friday March 7, 2025 » AugMix in PyTorch (1)., viewed ,<https://www.scien.cx/2025/03/07/augmix-in-pytorch-1/>
VANCOUVERSuper Kai (Kazuya Ito) | Sciencx - » AugMix in PyTorch (1). [Internet]. [Accessed ]. Available from: https://www.scien.cx/2025/03/07/augmix-in-pytorch-1/
CHICAGO" » AugMix in PyTorch (1)." Super Kai (Kazuya Ito) | Sciencx - Accessed . https://www.scien.cx/2025/03/07/augmix-in-pytorch-1/
IEEE" » AugMix in PyTorch (1)." Super Kai (Kazuya Ito) | Sciencx [Online]. Available: https://www.scien.cx/2025/03/07/augmix-in-pytorch-1/. [Accessed: ]
rf:citation » AugMix in PyTorch (1) | Super Kai (Kazuya Ito) | Sciencx | https://www.scien.cx/2025/03/07/augmix-in-pytorch-1/ |
Please log in to upload a file.
There are no updates yet.
Click the Upload button above to add an update.