This content originally appeared on HackerNoon and was authored by Image Recognition
Table of Links
2 MindEye2 and 2.1 Shared-Subject Functional Alignment
2.2 Backbone, Diffusion Prior, & Submodules
2.3 Image Captioning and 2.4 Fine-tuning Stable Diffusion XL for unCLIP
3 Results and 3.1 fMRI-to-Image Reconstruction
3.3 Image/Brain Retrieval and 3.4 Brain Correlation
6 Acknowledgements and References
\ A Appendix
A.2 Additional Dataset Information
A.3 MindEye2 (not pretrained) vs. MindEye1
A.4 Reconstruction Evaluations Across Varying Amounts of Training Data
A.5 Single-Subject Evaluations
A.7 OpenCLIP BigG to CLIP L Conversion
A.9 Reconstruction Evaluations: Additional Information
A.10 Pretraining with Less Subjects
A.11 UMAP Dimensionality Reduction
A.13 Human Preference Experiments
A.3 MindEye2 (not pretrained) vs. MindEye1
Table 6 shows how MindEye2 outperforms MindEye1 even without pretraining on other subjects. Models were trained using the full 40 sessions of training data from subject 1. This suggests that improvements from MindEye1 to MindEye2 are not explained solely from pretraining on other subjects, but that benefits also come from improved model architecture and training procedure.
\
\
:::info This paper is available on arxiv under CC BY 4.0 DEED license.
:::
:::info Authors:
(1) Paul S. Scotti, Stability AI and Medical AI Research Center (MedARC);
(2) Mihir Tripathy, Medical AI Research Center (MedARC) and a Core contribution;
(3) Cesar Kadir Torrico Villanueva, Medical AI Research Center (MedARC) and a Core contribution;
(4) Reese Kneeland, University of Minnesota and a Core contribution;
(5) Tong Chen, The University of Sydney and Medical AI Research Center (MedARC);
(6) Ashutosh Narang, Medical AI Research Center (MedARC);
(7) Charan Santhirasegaran, Medical AI Research Center (MedARC);
(8) Jonathan Xu, University of Waterloo and Medical AI Research Center (MedARC);
(9) Thomas Naselaris, University of Minnesota;
(10) Kenneth A. Norman, Princeton Neuroscience Institute;
(11) Tanishq Mathew Abraham, Stability AI and Medical AI Research Center (MedARC).
:::
\
This content originally appeared on HackerNoon and was authored by Image Recognition

Image Recognition | Sciencx (2025-04-15T03:00:04+00:00) MindEye2 (Not Pretrained) vs. MindEye1. Retrieved from https://www.scien.cx/2025/04/15/mindeye2-not-pretrained-vs-mindeye1/
Please log in to upload a file.
There are no updates yet.
Click the Upload button above to add an update.