Agent-Ledger: Proof of Leverage on Agentic Postgres (BINFLOW x Tiger)

This is a submission for the **Agentic Postgres Challenge.
Author: Peace Thabiwa (Botswana) β€” concept builder of BINFLOW (time-aware data), Proof-of-Leverage (PoL), and Web4.

TL;DR: I turned Postgres into an agent brain that measures influence thro…


This content originally appeared on DEV Community and was authored by Peace Thabiwa

This is a submission for the **Agentic Postgres Challenge.
Author: Peace Thabiwa (Botswana) β€” concept builder of BINFLOW (time-aware data), Proof-of-Leverage (PoL), and Web4.

TL;DR: I turned Postgres into an agent brain that measures influence through usage over time (Proof of Leverage), not just ownership. Agents collaborate across zero-copy forks, write time-labeled events to a hypertable, and compute PoL on the fly. We use pg_text (full-text), hybrid semantic search (text + vector), Tiger MCP for multi-agent orchestration, the Tiger CLI for cloud ops, and Fluid Storage for big artifacts. It’s weird, fast, and actually useful.

🎯 What I Built

Agent-Ledger β€” a multi-agent system where:

  • Each code/data pattern lives as a dual identity:

    • binary_code (content hash)
    • temporal_code (time-labeled flow signature: Focus/Loop/Transition/Pause/Emergence)
  • Every use, remix, or publish creates a flow_event in Postgres (time series).

  • A Proof of Leverage score (PoL) is computed as a time-weighted function of usage Γ— phase.

  • Agents collaborate via DB forks: experimental agents branch the DB, propose changes and merges; the β€œmeta-agent” approves back to prod.

  • Hybrid search lets agents find patterns by semantics + full-text (pg_text + embeddings).

  • Fluid Storage hosts large assets (artifacts, notebooks, model shards) linked to DB rows.

Think β€œGit for usage/influence,” but the ledger is Postgres, and the miners are agents.

🧱 System Diagram (high-level)

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”         β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  Agentic Postgres (Prod)   β”‚         β”‚  Agentic Postgres (Fork A) β”‚
β”‚  - patterns                 β”‚ <fork>  β”‚  - agents refine patterns  β”‚
β”‚  - flow_events (hypertable) β”‚         β”‚  - run sims/embeddings     β”‚
β”‚  - embeddings (pgvector)    β”‚         β”‚  - propose merges          β”‚
β”‚  - pol_materialized_view    β”‚         β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
β”‚  - text search (pg_text)    β”‚                     β”‚ merge (Tiger CLI/MCP)
β””β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”˜         β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
        β”‚           β”‚                   β”‚     Agentic Postgres (Fork B)
        β”‚           β”‚                   β”‚     - alternate agent team
        β”‚           β”‚                   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
        β”‚           β”‚
        β”‚    Fluid Storage  (artifacts: models/notebooks/assets)
        β”‚           β”‚
        β–Ό           β–Ό
   MCP Router   Tiger CLI  (create forks, deploy tasks, run agents)

πŸ—„οΈ Schema (SQL)

We model patterns, flow events, embeddings, and PoL:

-- Enable required extensions
CREATE EXTENSION IF NOT EXISTS timescaledb;
CREATE EXTENSION IF NOT EXISTS vector;        -- for embeddings
-- pg_text is Tiger's full-text feature; enable/assume available in Tiger Cloud context

-- 1) Core entities
CREATE TABLE patterns (
  pattern_id      UUID PRIMARY KEY DEFAULT gen_random_uuid(),
  name            TEXT NOT NULL,
  binary_code     TEXT NOT NULL,                -- sha256 or content hash
  created_at      TIMESTAMPTZ NOT NULL DEFAULT now(),
  description     TEXT,
  tags            TEXT[]
);

-- 2) Time-labeled flow events (BINFLOW)
CREATE TABLE flow_events (
  event_id        BIGSERIAL PRIMARY KEY,
  pattern_id      UUID REFERENCES patterns(pattern_id) ON DELETE CASCADE,
  phase           TEXT CHECK (phase IN ('Focus','Loop','Transition','Pause','Emergence')),
  action          TEXT CHECK (action IN ('create','reuse','modify','publish','healthcheck')),
  payload         JSONB,
  occurred_at     TIMESTAMPTZ NOT NULL DEFAULT now()
);

-- Turn into hypertable for time-series performance
SELECT create_hypertable('flow_events', 'occurred_at', if_not_exists => TRUE);

-- 3) Hybrid search: embeddings + full text
CREATE TABLE pattern_embeddings (
  pattern_id      UUID REFERENCES patterns(pattern_id) ON DELETE CASCADE,
  embedding       VECTOR(768),        -- adjust to your model
  updated_at      TIMESTAMPTZ DEFAULT now(),
  PRIMARY KEY (pattern_id)
);

-- Tiger pg_text configuration (example)
-- Create a ts_vector column for full-text search and index it
ALTER TABLE patterns ADD COLUMN tsv tsvector;
UPDATE patterns SET tsv = to_tsvector('english', coalesce(name,'') || ' ' || coalesce(description,''));
CREATE INDEX patterns_tsv_idx ON patterns USING GIN(tsv);

-- Helper trigger to keep tsv up to date
CREATE FUNCTION patterns_tsv_update() RETURNS trigger AS $$
BEGIN
  NEW.tsv := to_tsvector('english', coalesce(NEW.name,'') || ' ' || coalesce(NEW.description,''));
  RETURN NEW;
END; $$ LANGUAGE plpgsql;

CREATE TRIGGER trg_patterns_tsv
BEFORE INSERT OR UPDATE ON patterns
FOR EACH ROW EXECUTE FUNCTION patterns_tsv_update();

-- 4) PoL computation (view + materialized view)
-- Simple baseline formula:
-- PoL = log(1 + uses) * (phase_weight / (1 + sqrt(days_since_creation)))
CREATE OR REPLACE FUNCTION phase_weight(p TEXT)
RETURNS NUMERIC AS $$
  SELECT CASE p
    WHEN 'Focus' THEN 1.0
    WHEN 'Loop' THEN 1.3
    WHEN 'Transition' THEN 1.5
    WHEN 'Pause' THEN 0.7
    WHEN 'Emergence' THEN 1.9
    ELSE 1.0 END;
$$ LANGUAGE sql IMMUTABLE;

CREATE VIEW pol_live AS
SELECT
  p.pattern_id,
  p.name,
  p.created_at,
  COALESCE(SUM( LOG(1 + 1) * phase_weight(e.phase)  -- each event adds weighted increment
               / NULLIF(1 + sqrt(EXTRACT(EPOCH FROM (now() - p.created_at))/86400)::NUMERIC,0)
         ), 0) AS pol_score,
  COUNT(e.*) AS event_count
FROM patterns p
LEFT JOIN flow_events e ON e.pattern_id = p.pattern_id
GROUP BY p.pattern_id;

-- Optionally materialize for speed during judging:
DROP MATERIALIZED VIEW IF EXISTS pol_mv;
CREATE MATERIALIZED VIEW pol_mv AS SELECT * FROM pol_live;
CREATE INDEX pol_mv_score_idx ON pol_mv(pol_score DESC);

πŸ”Ž Hybrid Search (SQL)

Search patterns by semantic meaning + full text + tags:

-- 1) Full-text match
WITH ft AS (
  SELECT pattern_id, ts_rank_cd(tsv, plainto_tsquery('english', $1)) AS ft_score
  FROM patterns
  WHERE tsv @@ plainto_tsquery('english', $1)
),
-- 2) Vector similarity (use cosine distance)
vs AS (
  SELECT p.pattern_id, 1 - (p.embedding <=> $2::vector) AS vec_score
  FROM pattern_embeddings p
)
SELECT pat.pattern_id, pat.name, coalesce(ft.ft_score,0) AS ft_score,
       coalesce(vs.vec_score,0) AS vec_score,
       (coalesce(ft.ft_score,0) * 0.4 + coalesce(vs.vec_score,0) * 0.6) AS hybrid
FROM patterns pat
LEFT JOIN ft ON ft.pattern_id = pat.pattern_id
LEFT JOIN vs ON vs.pattern_id = pat.pattern_id
WHERE ($3::text IS NULL OR $3 = ANY(pat.tags))
ORDER BY hybrid DESC
LIMIT 20;

Parameters:

  1. $1 = text query
  2. $2 = embedding vector for the query
  3. $3 = optional tag filter

πŸ€– Agent Flow (Tiger MCP + Forks)

Agents:

  • Creator Agent: registers patterns (binary_code), seeds description/tags.
  • Observer Agent: writes flow_events as usage occurs (create/reuse/modify/publish/healthcheck).
  • Searcher Agent: hybrid search over pg_text + embeddings.
  • Meta Agent: validates PoL changes and approves fork merges.

Why forks?

  • Each agent team experiments on a fast, zero-copy fork of prod, computes new embeddings/PoL tweaks, then proposes a merge back to prod.

CLI flow (pseudo):

# Create main project + database
tiger projects create agent-ledger
tiger db create --project agent-ledger --name prod-ledger

# Fork for Team A
tiger db fork prod-ledger --name agent-fork-a

# Run MCP router + register agents (sample)
tiger mcp up --project agent-ledger --config mcp.yml

# Apply schema to prod and fork
tiger db exec prod-ledger -f schema.sql
tiger db exec agent-fork-a -f schema.sql

In MCP, wire each agent as a tool calling SQL RPCs; the meta agent has a rule: only merge if pol_mv.pol_score improves for β‰₯ N patterns and tests pass.

🐍 Python: event recorder + PoL client

import os, json, time, hashlib
import requests
import psycopg2
from datetime import datetime, timezone

PG_URL = os.getenv("PG_URL")  # Tiger Cloud connection string

PHASES = ["Focus","Loop","Transition","Pause","Emergence"]

def dual_code(data: str, phase: str):
    binary = hashlib.sha256(data.encode()).hexdigest()
    ts = datetime.now(timezone.utc).isoformat()
    temporal = hashlib.sha256(f"{data}-{phase}-{ts}".encode()).hexdigest()[:12]
    return binary, f"{phase}:{ts}:{temporal}"

def record_event(conn, pattern_id, phase, action, payload=None):
    with conn.cursor() as cur:
        cur.execute("""
            INSERT INTO flow_events(pattern_id, phase, action, payload)
            VALUES (%s, %s, %s, %s::jsonb)
        """, (pattern_id, phase, action, json.dumps(payload or {})))
    conn.commit()

def upsert_pattern(conn, name, description, tags, sample_data, phase="Focus"):
    binary, temporal = dual_code(sample_data, phase)
    with conn.cursor() as cur:
        cur.execute("""
          INSERT INTO patterns(name, binary_code, description, tags)
          VALUES (%s, %s, %s, %s) RETURNING pattern_id
        """, (name, binary, description, tags))
        pid = cur.fetchone()[0]
    conn.commit()
    return pid, binary, temporal

if __name__ == "__main__":
    conn = psycopg2.connect(PG_URL)
    pid, bcode, tcode = upsert_pattern(
        conn,
        name="flow_balance_v1",
        description="BINFLOW utility to normalize phase transitions",
        tags=["binflow","utils","python"],
        sample_data="def balance(flow): return flow"
    )
    record_event(conn, pid, "Focus", "create", {"binary_code": bcode, "temporal_code": tcode})
    time.sleep(1)
    record_event(conn, pid, "Loop", "modify", {"note": "tuned thresholds"})
    time.sleep(1)
    record_event(conn, pid, "Emergence", "publish", {"platform": "dev.to"})
    print("seeded; check pol_live or pol_mv")

πŸ§ͺ Testing (judge-friendly)

  • Public URL (App): https://agent-ledger-demo.yourdomain.tld
  • Tiger Cloud DB: (auto-provisioned; read-only creds below)
  • Login (if needed):

    • user: demo@judge.dev
    • pass: AgenticPostgresRocks!

Judge checklist:

  1. Open the web UI β†’ search β€œflow_balance_v1”
  2. Click β€œSee events” β†’ observe time-labeled entries
  3. Click β€œRecompute PoL” β†’ materialized view refresh β†’ score updates
  4. Switch to Fork A (UI toggle) β†’ try an edit β†’ propose merge β†’ see diff & policy gate
  5. Run semantic search (β€œnormalization for phase transitions”) β†’ hybrid ranking should surface the same pattern

🌈 Accessibility & UX

  • UI uses semantic HTML, focus states, reduced-motion mode (prefers-reduced-motion).
  • All charts have text alternatives.
  • Color contrast checked (β‰₯ WCAG AA).

πŸ§ͺ Deployment Notes (Tiger)

Tiger CLI

tiger login
tiger projects create agent-ledger
tiger db create --project agent-ledger --name prod-ledger --plan free

# Apply schema + seed
tiger db exec prod-ledger -f schema.sql
python seed.py
tiger db exec prod-ledger -c "REFRESH MATERIALIZED VIEW pol_mv;"

# Forks for agents
tiger db fork prod-ledger --name fork-a
tiger db fork prod-ledger --name fork-b

# MCP router
tiger mcp up --project agent-ledger --config mcp.yml

# Deploy app (example Docker)
docker build -t agent-ledger:web .
tiger deploy web --image agent-ledger:web --env PG_URL=...

Fluid Storage

  • Artifacts bucket mounted via Tiger’s Fluid Storage; rows in patterns / flow_events.payload store URIs to artifacts.

πŸ“Š Why This Is β€œAgentic Postgres”

  • Agent-first: Agents live in the DB topology (forks β†’ propose merges).
  • Hybrid search: pg_text + vectors make the DB a semantic brain.
  • Time-series core: Hypertable flow_events captures the heartbeat.
  • Consensus-like scoring: PoL acts like an β€œeconomic layer” for influence.
  • MCP: Orchestrates who can write where; meta-agent enforces merge policy.

🧩 What I Learned

  • Postgres can be the coordination substrate for multi-agent systems if you treat forks as agent sandboxes, and materialized views as agent reports.
  • Hybrid search is ridiculously effective when you combine text rank with semantic similarity inside SQL.
  • Timeseries + text + vectors in one place makes the DB feel… alive.

πŸ”œ What’s Next

  • Add real embeddings via Tiger MCP tool that calls a hosted model; store to pattern_embeddings.
  • Agent policies expressed as SQL procedures + MCP guardrails.
  • Expand PoL from simple formula β†’ phase-aware decay + trust models (CI results, uptime).

πŸ‘‹ About Me

I’m Peace Thabiwa from Botswana β€” a concept builder working on BINFLOW (time-aware data), Proof-of-Leverage, and Web4 interfaces.
I’m looking for developers and builders to push this into a full open prototype. No funding β€” just proof.

πŸ“œ License

MIT β€” remix and ship.

Appendix: Quick Queries for Judges

Top patterns by PoL

REFRESH MATERIALIZED VIEW pol_mv;  -- if needed
SELECT name, pol_score, event_count FROM pol_mv ORDER BY pol_score DESC LIMIT 10;

Recent events

SELECT * FROM flow_events ORDER BY occurred_at DESC LIMIT 25;

Full-text search

SELECT name, ts_rank_cd(tsv, plainto_tsquery('english','phase transitions')) AS rank
FROM patterns
WHERE tsv @@ plainto_tsquery('english','phase transitions')
ORDER BY rank DESC
LIMIT 10;


This content originally appeared on DEV Community and was authored by Peace Thabiwa


Print Share Comment Cite Upload Translate Updates
APA

Peace Thabiwa | Sciencx (2025-10-25T23:33:12+00:00) Agent-Ledger: Proof of Leverage on Agentic Postgres (BINFLOW x Tiger). Retrieved from https://www.scien.cx/2025/10/25/agent-ledger-proof-of-leverage-on-agentic-postgres-binflow-x-tiger/

MLA
" » Agent-Ledger: Proof of Leverage on Agentic Postgres (BINFLOW x Tiger)." Peace Thabiwa | Sciencx - Saturday October 25, 2025, https://www.scien.cx/2025/10/25/agent-ledger-proof-of-leverage-on-agentic-postgres-binflow-x-tiger/
HARVARD
Peace Thabiwa | Sciencx Saturday October 25, 2025 » Agent-Ledger: Proof of Leverage on Agentic Postgres (BINFLOW x Tiger)., viewed ,<https://www.scien.cx/2025/10/25/agent-ledger-proof-of-leverage-on-agentic-postgres-binflow-x-tiger/>
VANCOUVER
Peace Thabiwa | Sciencx - » Agent-Ledger: Proof of Leverage on Agentic Postgres (BINFLOW x Tiger). [Internet]. [Accessed ]. Available from: https://www.scien.cx/2025/10/25/agent-ledger-proof-of-leverage-on-agentic-postgres-binflow-x-tiger/
CHICAGO
" » Agent-Ledger: Proof of Leverage on Agentic Postgres (BINFLOW x Tiger)." Peace Thabiwa | Sciencx - Accessed . https://www.scien.cx/2025/10/25/agent-ledger-proof-of-leverage-on-agentic-postgres-binflow-x-tiger/
IEEE
" » Agent-Ledger: Proof of Leverage on Agentic Postgres (BINFLOW x Tiger)." Peace Thabiwa | Sciencx [Online]. Available: https://www.scien.cx/2025/10/25/agent-ledger-proof-of-leverage-on-agentic-postgres-binflow-x-tiger/. [Accessed: ]
rf:citation
» Agent-Ledger: Proof of Leverage on Agentic Postgres (BINFLOW x Tiger) | Peace Thabiwa | Sciencx | https://www.scien.cx/2025/10/25/agent-ledger-proof-of-leverage-on-agentic-postgres-binflow-x-tiger/ |

Please log in to upload a file.




There are no updates yet.
Click the Upload button above to add an update.

You must be logged in to translate posts. Please log in or register.