This content originally appeared on DEV Community and was authored by Super Kai (Kazuya Ito)
*Memos:
-
My post explains RandAugment() about no arguments and
fill
argument. -
My post explains RandAugment() about
num_ops
andfill
argument. -
My post explains RandAugment() about
num_magnitude_bins
argument.
RandAugment() can randomly augment an image as shown below. *It's about magnitude
and fill
argument:
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandAugment
from torchvision.transforms.functional import InterpolationMode
origin_data = OxfordIIITPet(
root="data",
transform=None
)
m0_data = OxfordIIITPet( # `m` is magnitude.
root="data",
transform=RandAugment(magnitude=0)
)
m1_data = OxfordIIITPet(
root="data",
transform=RandAugment(magnitude=1)
)
m2_data = OxfordIIITPet(
root="data",
transform=RandAugment(magnitude=2)
)
m5_data = OxfordIIITPet(
root="data",
transform=RandAugment(magnitude=5)
)
m10_data = OxfordIIITPet(
root="data",
transform=RandAugment(magnitude=10)
)
m25_data = OxfordIIITPet(
root="data",
transform=RandAugment(magnitude=25)
)
no1000m0_data = OxfordIIITPet( # `no` is num_ops.
root="data",
transform=RandAugment(num_ops=1000, magnitude=0)
)
no1000m1_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=1000, magnitude=1)
)
no1000m2_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=1000, magnitude=2)
)
no1000m5_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=1000, magnitude=5)
)
no1000m10_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=1000, magnitude=10)
)
no1000m25_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=1000, magnitude=25)
)
m0nmb1000_data = OxfordIIITPet( # `nmb` is num_magnitude_bins.
root="data",
transform=RandAugment(magnitude=0, num_magnitude_bins=1000)
)
m1nmb1000_data = OxfordIIITPet(
root="data",
transform=RandAugment(magnitude=1, num_magnitude_bins=1000)
)
m2nmb1000_data = OxfordIIITPet(
root="data",
transform=RandAugment(magnitude=2, num_magnitude_bins=1000)
)
m5nmb1000_data = OxfordIIITPet(
root="data",
transform=RandAugment(magnitude=5, num_magnitude_bins=1000)
)
m10nmb1000_data = OxfordIIITPet(
root="data",
transform=RandAugment(magnitude=10, num_magnitude_bins=1000)
)
m25nmb1000_data = OxfordIIITPet(
root="data",
transform=RandAugment(magnitude=25, num_magnitude_bins=1000)
)
m50nmb1000_data = OxfordIIITPet(
root="data",
transform=RandAugment(magnitude=50, num_magnitude_bins=1000)
)
m100nmb1000_data = OxfordIIITPet(
root="data",
transform=RandAugment(magnitude=100, num_magnitude_bins=1000)
)
m500nmb1000_data = OxfordIIITPet(
root="data",
transform=RandAugment(magnitude=500, num_magnitude_bins=1000)
)
m999nmb1000_data = OxfordIIITPet(
root="data",
transform=RandAugment(magnitude=999, num_magnitude_bins=1000)
)
no1000m0nmb1000_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=1000, magnitude=0, num_magnitude_bins=1000)
)
no1000m1nmb1000_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=1000, magnitude=1, num_magnitude_bins=1000)
)
no1000m2nmb1000_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=1000, magnitude=2, num_magnitude_bins=1000)
)
no1000m5nmb1000_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=1000, magnitude=5, num_magnitude_bins=1000)
)
no1000m10nmb1000_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=1000, magnitude=10, num_magnitude_bins=1000)
)
no1000m25nmb1000_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=1000, magnitude=25, num_magnitude_bins=1000)
)
no1000m50nmb1000_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=1000, magnitude=50, num_magnitude_bins=1000)
)
no1000m100nmb1000_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=1000, magnitude=100, num_magnitude_bins=1000)
)
no1000m500nmb1000_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=1000, magnitude=500, num_magnitude_bins=1000)
)
no1000m999nmb1000_data = OxfordIIITPet(
root="data",
transform=RandAugment(num_ops=1000, magnitude=999, num_magnitude_bins=1000)
)
m25fgray_data = OxfordIIITPet( # `f` is fill.
root="data",
transform=RandAugment(magnitude=25, fill=150)
# transform=RandAugment(magnitude=25, fill=[150])
)
m25fpurple_data = OxfordIIITPet(
root="data",
transform=RandAugment(magnitude=25, fill=[160, 32, 240])
)
import matplotlib.pyplot as plt
def show_images1(data, main_title=None):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=m0_data, main_title="m0_data")
show_images1(data=m1_data, main_title="m1_data")
show_images1(data=m2_data, main_title="m2_data")
show_images1(data=m5_data, main_title="m5_data")
show_images1(data=m10_data, main_title="m10_data")
show_images1(data=m25_data, main_title="m25_data")
print()
show_images1(data=no1000m0_data, main_title="no1000m0_data")
show_images1(data=no1000m1_data, main_title="no1000m1_data")
show_images1(data=no1000m2_data, main_title="no1000m2_data")
show_images1(data=no1000m5_data, main_title="no1000m5_data")
show_images1(data=no1000m10_data, main_title="no1000m10_data")
show_images1(data=no1000m25_data, main_title="no1000m25_data")
print()
show_images1(data=m0nmb1000_data, main_title="m0nmb1000_data")
show_images1(data=m1nmb1000_data, main_title="m1nmb1000_data")
show_images1(data=m2nmb1000_data, main_title="m2nmb1000_data")
show_images1(data=m5nmb1000_data, main_title="m5nmb1000_data")
show_images1(data=m10nmb1000_data, main_title="m10nmb1000_data")
show_images1(data=m25nmb1000_data, main_title="m25nmb1000_data")
show_images1(data=m50nmb1000_data, main_title="m50nmb1000_data")
show_images1(data=m100nmb1000_data, main_title="m100nmb1000_data")
show_images1(data=m500nmb1000_data, main_title="m500nmb1000_data")
show_images1(data=m999nmb1000_data, main_title="m999nmb1000_data")
print()
show_images1(data=no1000m0nmb1000_data, main_title="no1000m0nmb1000_data")
show_images1(data=no1000m1nmb1000_data, main_title="no1000m1nmb1000_data")
show_images1(data=no1000m2nmb1000_data, main_title="no1000m2nmb1000_data")
show_images1(data=no1000m5nmb1000_data, main_title="no1000m5nmb1000_data")
show_images1(data=no1000m10nmb1000_data, main_title="no1000m10nmb1000_data")
show_images1(data=no1000m25nmb1000_data, main_title="no1000m25nmb1000_data")
show_images1(data=no1000m50nmb1000_data, main_title="no1000m50nmb1000_data")
show_images1(data=no1000m100nmb1000_data, main_title="no1000m100nmb1000_data")
show_images1(data=no1000m500nmb1000_data, main_title="no1000m500nmb1000_data")
show_images1(data=no1000m999nmb1000_data, main_title="no1000m999nmb1000_data")
print()
show_images1(data=m25fgray_data, main_title="m25fgray_data")
show_images1(data=m25fpurple_data, main_title="m25fpurple_data")
# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, no=2, m=9, nmb=31,
ip=InterpolationMode.NEAREST, f=None):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
if main_title != "origin_data":
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
ra = RandAugment(num_ops=no, magnitude=m,
num_magnitude_bins=nmb,
interpolation=ip, fill=f)
plt.imshow(X=ra(im))
plt.xticks(ticks=[])
plt.yticks(ticks=[])
else:
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="m0_data", m=0)
show_images2(data=origin_data, main_title="m1_data", m=1)
show_images2(data=origin_data, main_title="m2_data", m=2)
show_images2(data=origin_data, main_title="m5_data", m=5)
show_images2(data=origin_data, main_title="m10_data", m=10)
show_images2(data=origin_data, main_title="m25_data", m=25)
print()
show_images2(data=origin_data, main_title="no1000m0_data", no=1000, m=0)
show_images2(data=origin_data, main_title="no1000m1_data", no=1000, m=1)
show_images2(data=origin_data, main_title="no1000m2_data", no=1000, m=2)
show_images2(data=origin_data, main_title="no1000m5_data", no=1000, m=5)
show_images2(data=origin_data, main_title="no1000m10_data", no=1000, m=10)
show_images2(data=origin_data, main_title="no1000m25_data", no=1000, m=25)
print()
show_images2(data=origin_data, main_title="m0nmb1000_data", m=0, nmb=1000)
show_images2(data=origin_data, main_title="m1nmb1000_data", m=1, nmb=1000)
show_images2(data=origin_data, main_title="m2nmb1000_data", m=2, nmb=1000)
show_images2(data=origin_data, main_title="m5nmb1000_data", m=5, nmb=1000)
show_images2(data=origin_data, main_title="m10nmb1000_data", m=10, nmb=1000)
show_images2(data=origin_data, main_title="m25nmb1000_data", m=25, nmb=1000)
show_images2(data=origin_data, main_title="m50nmb1000_data", m=50, nmb=1000)
show_images2(data=origin_data, main_title="m100nmb1000_data", m=100, nmb=1000)
show_images2(data=origin_data, main_title="m500nmb1000_data", m=500, nmb=1000)
show_images2(data=origin_data, main_title="m999nmb1000_data", m=999, nmb=1000)
print()
show_images2(data=origin_data, main_title="no1000m0nmb1000_data", no=1000, m=0,
nmb=1000)
show_images2(data=origin_data, main_title="no1000m1nmb1000_data", no=1000, m=1,
nmb=1000)
show_images2(data=origin_data, main_title="no1000m2nmb1000_data", no=1000, m=2,
nmb=1000)
show_images2(data=origin_data, main_title="no1000m5nmb1000_data", no=1000, m=5,
nmb=1000)
show_images2(data=origin_data, main_title="no1000m10nmb1000_data", no=1000,
m=10, nmb=1000)
show_images2(data=origin_data, main_title="no1000m25nmb1000_data", no=1000,
m=25, nmb=1000)
show_images2(data=origin_data, main_title="no1000m50nmb1000_data", no=1000,
m=50, nmb=1000)
show_images2(data=origin_data, main_title="no1000m100nmb1000_data", no=1000,
m=100, nmb=1000)
show_images2(data=origin_data, main_title="no1000m500nmb1000_data", no=1000,
m=500, nmb=1000)
show_images2(data=origin_data, main_title="no1000m999nmb1000_data", no=1000,
m=999, nmb=1000)
print()
show_images2(data=origin_data, main_title="m25fgray_data", m=25, f=150)
show_images2(data=origin_data, main_title="m25fpurple_data", m=25,
f=[160, 32, 240])
This content originally appeared on DEV Community and was authored by Super Kai (Kazuya Ito)
Print
Share
Comment
Cite
Upload
Translate
Updates
There are no updates yet.
Click the Upload button above to add an update.

APA
MLA
Super Kai (Kazuya Ito) | Sciencx (2025-03-16T12:34:49+00:00) RandAugment in PyTorch (3). Retrieved from https://www.scien.cx/2025/03/16/randaugment-in-pytorch-3/
" » RandAugment in PyTorch (3)." Super Kai (Kazuya Ito) | Sciencx - Sunday March 16, 2025, https://www.scien.cx/2025/03/16/randaugment-in-pytorch-3/
HARVARDSuper Kai (Kazuya Ito) | Sciencx Sunday March 16, 2025 » RandAugment in PyTorch (3)., viewed ,<https://www.scien.cx/2025/03/16/randaugment-in-pytorch-3/>
VANCOUVERSuper Kai (Kazuya Ito) | Sciencx - » RandAugment in PyTorch (3). [Internet]. [Accessed ]. Available from: https://www.scien.cx/2025/03/16/randaugment-in-pytorch-3/
CHICAGO" » RandAugment in PyTorch (3)." Super Kai (Kazuya Ito) | Sciencx - Accessed . https://www.scien.cx/2025/03/16/randaugment-in-pytorch-3/
IEEE" » RandAugment in PyTorch (3)." Super Kai (Kazuya Ito) | Sciencx [Online]. Available: https://www.scien.cx/2025/03/16/randaugment-in-pytorch-3/. [Accessed: ]
rf:citation » RandAugment in PyTorch (3) | Super Kai (Kazuya Ito) | Sciencx | https://www.scien.cx/2025/03/16/randaugment-in-pytorch-3/ |
Please log in to upload a file.
There are no updates yet.
Click the Upload button above to add an update.