This content originally appeared on DEV Community and was authored by Md Mahbubur Rahman
Quick Verdict (TL;DR)
| Use Case | Best Choice | Why | 
|---|---|---|
| Browser extension / Web-based AI | ✅ ONNX Runtime Web | Faster, WebAssembly backend, works in all browsers, supports more models, no special conversion steps | 
| Mobile app / Electron app / native desktop | ✅ TensorFlow Lite | Designed for native edge devices (Android, iOS, Raspberry Pi, etc.) | 
| General-purpose local AI for multiple environments (browser + backend) | ✅ ONNX Runtime (Web + Node + Python) | Same model across environments — “write once, run anywhere” | 
| Tiny in-browser inference (<100 MB, no backend) | ✅ ONNX Runtime Web | Smaller footprint, simple setup, no GPU drivers | 
| Hardware-optimized inference (GPU, NNAPI, CoreML) | ✅ TensorFlow Lite | Deep optimization for edge hardware accelerators | 
Detailed Comparison
| Feature | TensorFlow Lite (TFLite) | ONNX Runtime Web (ORT-Web) | 
|---|---|---|
| Target Platform | Primarily mobile / embedded | Browser, Node.js, Python, C++ | 
| Browser Support | Indirect (requires TF.js bridge) | ✅ Direct WebAssembly & WebGPU | 
| Model Conversion | Convert .pb / .keras → .tflite
 | 
Convert from any major framework → .onnx
 | 
| Supported Models | TensorFlow-trained models only | PyTorch, TF, Scikit, HuggingFace, etc. | 
| Performance | Great on Android/iOS (NNAPI/CoreML) | Excellent on desktop browsers (WASM SIMD / WebGPU) | 
| GPU Acceleration (Browser) | ❌ Limited / experimental | ✅ WebGPU + WebGL | 
| Model Size / Load Time | Usually smaller, quantized | Slightly larger, but flexible | 
| Ease of Setup (Firefox) | Harder — needs TF.js shim | ✅ Simple <script> or npm import | 
| Community Trend (2025) | Declining for web use | 📈 Rapidly growing, backed by Microsoft + HuggingFace | 
| APIs | 
Interpreter (low-level) | 
InferenceSession.run(inputs) (modern) | 
Real-World Developer Experience
For browser-based plugins like MindFlash:
import * as ort from 'onnxruntime-web';
const session = await ort.InferenceSession.create('model.onnx');
const results = await session.run(inputs);
✅ Works offline and cross-platform.
✅ Minimal setup, perfect for WebExtensions.
TensorFlow Lite is better for native mobile or IoT apps, not browser extensions.
Future-Proofing for All Projects
| Project Type | Recommended Runtime | 
|---|---|
| Firefox / Chrome / Edge Extension | ONNX Runtime Web | 
| Electron Desktop App | ONNX Runtime Node | 
| Native Mobile (Android/iOS) | TensorFlow Lite | 
| Local Server or API Backend | ONNX Runtime Python / C++ | 
| IoT Edge Device (Raspberry Pi, Jetson) | TensorFlow Lite or ONNX Runtime C++ | 
Model Conversion Workflow
# PyTorch → ONNX
torch.onnx.export(model, dummy_input, "model.onnx")
# TensorFlow → TFLite
tflite_convert --saved_model_dir=saved_model --output_file=model.tflite
# Quantize ONNX
python -m onnxruntime.quantization.quantize_dynamic model.onnx model_int8.onnx
Privacy + Offline Advantage
ONNX Runtime Web runs entirely in the browser sandbox, never sends webpage data to any server — ideal for privacy-focused extensions like MindFlash.
Final Recommendation
✅ For Firefox / Chrome / Edge AI plugins → ONNX Runtime Web
✅ For native apps → TensorFlow Lite
This content originally appeared on DEV Community and was authored by Md Mahbubur Rahman
Md Mahbubur Rahman | Sciencx (2025-11-03T13:48:13+00:00) Battle of the Lightweight AI Engines: TensorFlow Lite vs ONNX Runtime Web. Retrieved from https://www.scien.cx/2025/11/03/battle-of-the-lightweight-ai-engines-tensorflow-lite-vs-onnx-runtime-web/
Please log in to upload a file.
There are no updates yet.
Click the Upload button above to add an update.